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Abstract.  18 

 19 

Regional surface temperature trends from the CMIP3 and CMIP5 20th century runs are compared 20 

with observations -- at spatial scales ranging from global averages to individual grid points -- 21 

using simulated intrinsic climate variability from pre-industrial control runs to assess whether 22 

observed trends are detectable and/or consistent with the models’ historical run trends.  The 23 

CMIP5 models are also used to detect anthropogenic components of the observed trends, 24 

weighed against an alternative scenario involving only natural forcings.  25 

Variability in the models is assessed via inspection of control run time series, standard deviation 26 

maps, spectral analyses, and low-frequency variance consistency tests applied to individual 27 

models.  The models are found to provide plausible representations of internal climate 28 

variability, though there is room for improvement. The influence of observational uncertainty on 29 

the trends is assessed, and found to be generally small compared to intrinsic climate variability.     30 

Observed temperature trends over 1901-2010 are found to contain detectable anthropogenic 31 

warming components over a large fraction (about 75%) of the analyzed global area.  In several 32 

regions, the observed warming is significantly underestimated by the models, including parts of 33 

the southern Ocean, south Atlantic, and far west Pacific.  Regions without detectable warming 34 

signals include the high latitude North Atlantic, the eastern U.S., and parts of the eastern Pacific.   35 

For 1981-2010, the observed warming trends over about 45% of the globe are found to contain a 36 

detectable anthropogenic warming; this includes much of the globe within about 40-45 degrees 37 

of the equator, except for the eastern Pacific. 38 



3 

 

 39 

1. Introduction 40 

Are historical simulations of surface temperature trends, obtained using climate models with the 41 

best available estimates of past climate forcings, consistent with observations?  Where on the 42 

globe can observed temperature trends be attributed to anthropogenic forcing? These questions 43 

can be examined using a substantial number of different climate models and using different 44 

analysis methods.  Here we attempt to incorporate information from a relatively large sample of 45 

climate models, from the Coupled Model Intercomparison Project 3 (CMIP3; Meehl et al. 2007) 46 

and CMIP5 (Taylor et al. 2012), using various multi-model combination techniques. The general 47 

approach is to compare the modeled and observed trends, in terms of both magnitude and 48 

pattern, by considering trends at each grid point in the observational grid, as well as trends over 49 

broader-scale regions.    50 

The term “detectable climate trend” used here refers to a trend in the observations that is 51 

inconsistent with (i.e., outside of the 5th to 95th percentile range of) simulated trends, either from 52 

control runs (the internal climate variability background) or from a sample of natural forcing 53 

response and control run variability combined (the natural climate variability background).  54 

(Control runs are long runs with pre-industrial forcings that do not change from year to year.)  55 

We interpret a trend in observations as “attributable (at least in part) to anthropogenic forcing” 56 

if it is both inconsistent with simulated natural climate variability (detectable) and consistent 57 

with the All Forcing runs that contain both anthropogenic forcing agents (e.g., changes in 58 

greenhouse gases and aerosols) and natural forcings (e.g., changes in solar insolation or volcanic 59 

aerosol loading).  If an observed trend is detectable but inconsistent with All Forcing runs 60 
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because it is larger than the simulated distribution of trends, we still interpret the observed trend 61 

as attributable, at least in part, to anthropogenic forcing.  While a number of CMIP5 models have 62 

natural forcing runs available on-line, for the CMIP3 models, relatively few natural forcing runs 63 

are available.  Therefore, for CMIP3, we adopt a simpler approach of assessing whether 64 

observed trends are consistent with All Forcing runs, but inconsistent with internal variability 65 

alone.  The simpler approach does not allow us to draw conclusions about whether an observed 66 

trend is attributable to anthropogenic forcing or not. 67 

The modeled internal climate variability from long control runs is used to determine whether 68 

observed and simulated trends are consistent or inconsistent.  In other words, we assess whether 69 

observed and simulated forced trends are more extreme than those that might be expected from 70 

random sampling of internal climate variability.  This approach has been applied to earlier 71 

models in a number of studies, beginning with the analyses of Stouffer et al. (1994; 2000).  72 

Similarly, we use the available ensemble of simulated forced trends to assess whether observed 73 

trends are compatible with the forcing-and-response hypotheses embodied by those forced 74 

simulations. 75 

Formal detection/attribution techniques often use a model-generated pattern from a single or set 76 

of climate forcing experiments, and then regress this pattern against the observations to compute 77 

a scaling amplitude (e.g., Hegerl et al. 1996;  Hasselmann 1997; Allen and Tett 1999; Allen and 78 

Stott 2003) .  If the scaling is significantly different from zero, the forced signal is detected.   If 79 

the scaling does not significantly differ from unity, then the amplitude of the signal agrees with 80 

observations, or is at least close enough to agree within an expected range based on internal 81 

climate variability.  Optimal detection techniques also filter the data during the analysis such that 82 

the chance of detecting a specified signal, or “fingerprint”, is enhanced if the signal is present in 83 
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the data.  An alternative approach that is less focused on model-defined patterns has been 84 

proposed by Schneider and Held (2001).  In contrast to the optimal detection/attribution 85 

methods, we compare both the amplitude and pattern simulated by the models directly with the 86 

observations, without rescaling of patterns or application of optimization filtering.  Our analysis 87 

is thus a consistency test for both the amplitude and pattern of the observed versus simulated 88 

trends, building on earlier work along these lines by Knutson et al. 1999; Karoly and Wu 2005; 89 

Knutson et al. 2006; and Wu and Karoly 2007 to test for detectable anthropogenic contributions.  90 

Other variants and enhancements to this general type of analysis have recently been presented by 91 

Sakaguchi et al. (2012).   More discussion of various detection and attribution methods and their 92 

use in general is contained in Hegerl et al. 2009.  93 

 94 

In this report, the models, methods, and observed data are described in Section 2.   We examine 95 

the model control runs and their variability in Section 3.  Global-mean time series from the 96 

20C3M historical runs are examined in Section 4.  Section 5 contains consistency tests for 97 

observed vs simulated trends, as discussed above, for temperatures averaged over various 98 

defined regions of the globe.  Maps based on results of consistency tests at the grid point scale 99 

are presented in Section 6.   A brief description of online supplemental material is given in 100 

Section 7, and the discussion and conclusions are given in Section 7. 101 

 102 

2.  Model and Observed Data Sources 103 

 104 
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a. Observed data 105 

 106 

The observed surface temperature dataset used in this study is the HadCRUT4 (Morice et al. 107 

2012) which is available as a set of anomalies relative to the period 1961-1990.  The dataset 108 

contains some notable revisions, particularly to SSTs (HadSST3; Kennedy et al. 2011) , relative 109 

to previous versions, so it important to retest earlier conclusions regarding climate trends using 110 

the revised data.  The dataset also contains uncertainty information, in the form of 100 ensemble 111 

members sampling the estimated observational uncertainty.  Some of our tests examine the 112 

sensitivity of trend results to this observational uncertainty.   113 

 114 

To form a combined product of SST and land surface air temperature, Morice et al. (2012) adopt 115 

the following procedure.  If both land data and SST data are available in a particular grid box, 116 

they are weighted according to the fraction of the grid box that is covered by land or ocean, 117 

respectively.  A minimum of 25% coverage is assumed, even if the fraction of the grid box 118 

covered by land is less than 25%.  In our study, we use this same general procedure, adapted to a 119 

model’s land-sea mask, to combine SST and land surface air temperature data sets from each 120 

model that we analyze. 121 

 122 

b.  CMIP3 and CMIP5 models 123 

 124 
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Figure 1 displays the complete collection of control runs from both CMIP3 and CMIP5 used in 125 

our analysis.  The data were downloaded from the CMIP3 (www-126 

pcmdi.gov/ipcc/about_ipcc.php) and CMIP5 (cmip-pcmdi.llnl.gov/cmip5) model archives.   We 127 

regridded (averaged) the model data from the 20C3M historical runs and control runs onto the 128 

observational grid.  In cases where we needed to use combined model land surface air 129 

temperature and SST data to compare with observations, we used  a procedure resembling that 130 

used for the observations, but using the model’s own land-sea mask.  For example, if any land is 131 

present in a grid box, a minimum of 25% land coverage is assumed, even if the fraction of the 132 

grid box covered by land is less than 25%.  Our general approach in this study is to attempt to 133 

mimic observations with the models, in terms of data coverage over time. To mimic the space-134 

time history of data gaps in the observations, we masked out (withheld from the analysis) model 135 

data at times and locations where data were labeled missing in the observations.  Finally, we 136 

computed the model’s climatology over the same years as for observations (1961-1990) and then 137 

created anomalies from this climatology. For example, this same procedure was used for 150-yr 138 

samples from the model control runs for analyses where we wanted to ensure that the control 139 

runs had missing data characteristics that were similar to those of the observed data.  140 

 141 

The historical forcings for the CMIP3 20C3M historical forcing runs are summarized in Rind et 142 

al. (2009; Table 3.6).  An important distinction among the models is the treatment of volcanic 143 

forcing. Ten of the 24 CMIP3 models we examined include volcanic forcing, while 14 do not.  144 

However, as discussed further below, for most of our assessments, we used a maximum of 19 of 145 

the 24 CMIP3 models of which eight included volcanic forcing while 11 models (identified by 146 

“*” after model name in Fig. 1 a,b) did not. We refer to these sets of models as the eight 147 
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“Volcanic” and 11 “Non-Volcanic” CMIP3 models, respectively, and distinguish between results 148 

for the two types of historical runs in our analysis.  For instance, in cases where we include both 149 

sets (19 models), we used the term “Volcanic and Non-Volcanic” models.   All 23 of the CMIP5 150 

models included in this study included volcanic forcing in their 20C3M runs.  However, only 151 

seven of the 23 CMIP5 models had Natural Forcing Only runs that extended to 2010.  These 152 

Natural Forcing runs extending to 2010 were necessary for some of our detection and attribution 153 

analyses concerning anthropogenic forcing. 154 

 155 

3.  Model Control Run Analysis 156 

a. Global mean time series 157 

The global-mean surface air temperature series from the CMIP3 and CMIP5 model control runs 158 

are shown in Fig. 1.  Data are displayed with arbitrary vertical offsets for visual clarity.  The 159 

figure also shows the observed surface temperature anomalies from HadCRUT4.  The curves 160 

labeled “Residual” were obtained by subtracting the multi-model mean of the historical volcanic 161 

forcing runs (either CMIP3 of CMIP5) from the full observed time series.  These observed 162 

residual series are estimates of the internal variability of the climate system derived from the 163 

observations in combination with the climate models’ response to estimated historical forcing.  164 

 165 

The model control runs exhibit long-term drifts.  The magnitude of these drifts tends to be larger 166 

in the CMIP3 control runs (Fig. 1a,b) than in the CMIP5 control runs (Fig. 1 c,d), although there 167 

are exceptions.  We assume that these drifts are due to the models not being in equilibrium with 168 
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the control run forcing, and we remove these by a linear trend analysis (depicted by the orange 169 

straight lines in Fig. 1).  In some CMIP3 cases the drift initial proceeds at one rate, but then the 170 

trend rate becomes smaller for the remainder of the run.  We approximate the drift in these cases 171 

with two separate linear trend segments, which are identified in the figure by the short vertical 172 

orange line segments.  These long-term drift trends are removed to produce drift-corrected series.  173 

The procedure for removing the trends involves calculating and removing the linear trends (over 174 

the time periods shown in Fig. 1) at each model grid point separately.  The orange trend lines 175 

shown in Fig. 1 illustrate the start and end points in time for the trends used for each model.   176 

Five of the 24 CMIP3 models, identified by “(-)”  in Fig. 1, were not used, or practically not 177 

used, beyond Fig. 1 in our analysis.  The IAP_fgoals1.0.g model has a strong discontinuity near 178 

year 200 of the control run.  We judge this as likely an artifact due to some problem with the 179 

model simulation, and we therefore chose to exclude this model from further analysis. The 180 

Miroc_3.2_hires and INGV_echam4 model control runs are so short in length that they are 181 

essentially unused in our analysis, since we require the control run record to be at least three 182 

times as long as a trend that is being assessed.  For two other models, we were not able to 183 

successfully obtain sea surface temperature information from the CMIP3 archive, and so these 184 

were excluded from further analysis. 185 

 186 

While some of the trends in the CMIP3 and CMIP5 control runs (Fig. 1) approach the observed 187 

trend in terms of general magnitude, those are associated with either the long-term drifts 188 

discussed above or with a few spurious discontinuity issues (e.g., IAP_fgoals1.0.g).  Controlling 189 

for these apparent problems, none of the control runs in the CMIP3 or CMIP5 samples exhibit a 190 
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centennial scale trend as large as the trend in the observations.  On the other hand, the variability 191 

of observed residual series appears roughly similar in scale to that from several of the control 192 

runs.  Three of the CMIP3 control runs illustrated in Fig. 1 (GISS_aom, GISS_model_e_h, and 193 

GISS_model_e_f) have much lower levels of global surface temperature variability than in the 194 

observed residual series.  For some sensitivity tests on the multi-model assessments, we have 195 

excluded these three models to test for robustness.   196 

b.  Geographical distribution of variability 197 

 198 

The geographical distribution of the standard deviation of annual mean surface air temperature is 199 

shown in Fig. 2. for CMIP3 models and Fig. 3 for CMIP5 models.  These use the full available 200 

time series from each control run.  The time series have had the long-term drift removed as 201 

discussed in section (3a).  Two features that stand out in Figs. 2 and 3 are the enhanced 202 

variability over land regions and in the eastern Equatorial Pacific.   These general features (and 203 

magnitudes of standard deviation) are also seen in the observed residual variability map shown in 204 

each figure, giving us some confidence in the models’ ability to simulate broad-scale features of  205 

surface temperature variability.  Note that while the observed residual standard deviation map is 206 

also shown here for reference, it should be compared to the model variability with caution.  For 207 

example,  the available observational record is relatively short, compared with many of the 208 

model control runs, and there are uncertainties in removing the forced variability component 209 

from observations to create the observed residual  and thus uncertainties in the observed internal 210 

variability estimate used for comparison to the model control runs.  With these caveats in mind, 211 

one can compare the modeled and observed standard deviation fields using the spatial correlation 212 

coefficient (shown above each figure panel, upper right).  These vary from about 0.5 to 0.7 for 213 
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the models shown, indicating relatively good agreement of overall spatial structure of the 214 

variability maps.  Further, by comparing the “All-model mean” standard deviation fields 215 

(average across all of the individual model panels) to the observed field, there is some suggestion 216 

that models tend to underestimate the interannual sea surface temperature variability over many 217 

parts of the globe.  The simulated variability in the ENSO region is very different among the 218 

models, with some models clearly displaying much less variability than in the observed map, and 219 

other models with apparently excessive variability. However, as noted by Wittenberg (2009) and 220 

Vecchi and Wittenberg (2010), long-running control runs suggest that the SST variability in the 221 

ENSO region can vary substantially between different 60-yr periods (the length of record used 222 

here for observations), which again emphasizes the caution that must be placed on comparisons 223 

of modeled vs. observed variability based on records of relatively limited duration.   224 

Versions of the control run standard deviation map which use low pass (> 10 year) filtered data 225 

have also been examined (not shown).  These have similar limitations to Fig. 2 and 3 when one 226 

attempts to compare models with observations.  The model fields indicate that most CMIP3 and 227 

CMIP5 models have their strongest low-frequency (> 10 year) variability in the polar regions and 228 

marginal sea ice areas near Antarctica, Greenland, and the periphery of the Arctic Ocean.  229 

 230 

4. Global mean surface temperature:  Historical forcing runs 231 

a. Time series of global mean surface temperature 232 

The global mean time series of surface temperature from the 20C3M historical runs are 233 

compared with observations (black curves) in Fig. 4 in a form similar to that presented by Hegerl 234 

et al. (2007).  The historical dates of large volcanic eruptions are shown by vertical brown lines. 235 

An analysis of the model time series for the CMIP3 and CMIP5 All-Forcing experiments is 236 
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presented in Figs. 4a-c, and for the CMIP5 Natural Forcing Only experiments in Fig. 4d.  The 237 

large shaded region on each plot shows the 5th to 95th percentile range of a single model 238 

realization from the multi-model sample.  The multi-model sample is formed by combining the 239 

distributions of each of the models, with each model having an equal probability weight in the 240 

multi-model distribution.  The sub-distribution from each model is centered on that model’s 241 

ensemble mean with the distribution about that mean based on the control run for that model.  242 

Thus the multi-model distribution incorporates the uncertainty due to differences between the 243 

model ensemble means (i.e., forcing and response-to-forcing uncertainties) and uncertainties due 244 

to internal variability for each model.   245 

The analysis shows that for the All Forcing runs (Fig. 4 a-c) most of the time the observed 246 

annual means lie within this 5th to 95th percentile range of single model realizations, implying 247 

that there is a consistency between the observed record and the multi-model ensemble of runs 248 

taken as a whole.  However, the range for the CMIP5 Natural Forcing Only simulations (Fig. 4d) 249 

clearly separates from the observed time series after about 1960, indicating that Natural Forcing 250 

Only runs are inconsistent with observations, and particularly for the late 20th century global 251 

warming. 252 

The narrower shaded region between the two thick red lines (a-c) depicts the 5th to 95th percentile 253 

range of the multi-model ensemble mean.  This is fairly narrow, indicating that the multi-model 254 

ensemble means of these particular sets of models are fairly well-constrained, with relatively 255 

small uncertainty.  The ensemble means of the CMIP3 and CMIP5 volcanic models (Fig. 4 a,c) 256 

track the observations remarkably well although the apparent volcanically induced temporary 257 

dips are not in full agreement with the observed behavior for those periods.  For example, in Fig. 258 

4a, and 4c, the multi-model responses to the Pinatubo and Krakatau eruptions appear to be larger 259 
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than in observations.  These apparent discrepancies in the volcanic responses will require further 260 

analysis (see e.g. Stenchikov et al. 2009) and are not a focus of the present study. For example, 261 

one must carefully assess the role of internal climate variability in judging whether these 262 

differences are significant or not.   263 

The combined volcanic and non-volcanic CMIP3 ensemble (Fig. 4 (b)) shows a substantially 264 

wider envelope of model behavior, as expected with the larger number of models and with the 265 

wider discrepancy in forcing among these models.  Since the “Non-Volcanic” runs have a 266 

substantially less realistic representation of the forcing, we will generally emphasize the 267 

“Volcanic” runs in panel (a) in our remaining forced model assessments for the CMIP3 models 268 

in this study. 269 

b. Spectra of global mean surface temperature 270 

Figure 5 (a,b)  shows the variance spectra of observed global mean temperature (black curves, 271 

with shaded range for the 90% confidence intervals) and of the individual CMIP3 and CMIP5 272 

“Volcanic forcing” historical runs (red curves) from Fig. 4 (a, c), using data from the years 1880-273 

2010.  The data were not detrended prior to computing the spectra.  Before plotting, the raw 274 

spectra were smoothed using a non-overlapping sliding boxcar window that groups the raw 275 

spectra into groups of three calculable frequencies.  The 90% confidence intervals on the 276 

observed spectrum assume six degrees of freedom for each spectral estimate (group of three) 277 

shown.  The sum of the variance is plotted at the central frequency of the sliding boxcar window.  278 

The enhanced power at low frequencies in (a,b) relative to (c,d) is associated with the strong 279 

warming trend in both observations and the All Forcing model runs.  There is a strong tendency 280 



14 

 

for the model spectra to lie within the 90% confidence intervals of the observed spectra, 281 

particularly at periods longer than 10 yr (frequency < 0.1 yr-1).   282 

The spectra in Fig 5 (c) and (d) are based on residual time series from observations or model 283 

historical runs, where the multi-model ensemble surface temperature time series from the 284 

20C3M volcanically forced historical runs is first subtracted from the observed global mean 285 

temperature series or from the individual model historical runs to form residual time series.  As a 286 

result of this filtering procedure, most of the long-term warming trend (e.g., Fig. 4 a, c) is 287 

removed from the time series.  The agreement between variance spectra of model and observed 288 

residual time series in Fig. 5 (c,d) is not as good as for the original unfiltered spectra (Fig. 5 a,b), 289 

particularly for the CMIP3.  290 

 291 

Overall, the results of these comparisons suggest that the model simulations have a plausible 292 

representation of variability of the climate system, in terms of the spatial pattern of variability  293 

and the direct comparison of the time series of observed and historical run global mean surface 294 

temperature.  The spectral results suggest that the models, particularly the CMIP3, may have 295 

some shortcomings in low-frequency variability simulations, although there are uncertainties in 296 

estimates of the internal climate variability as obtained by creating observed residual time series.  297 

Overall, these findings encourage us to use the models to assess surface temperature trends at the 298 

regional scale in the following sections, with the caveat that there is likely room for improvement 299 

in the model simulations of internal variability.  Further tests of low-frequency variability are 300 

presented in Section 6. 301 

 302 
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5. Trend assessments: global mean and regional time series 303 

a. Methodology for the “sliding trend” analysis: CMIP5 models 304 

In this section we compare the observed and simulated historical (20C3M) temperature trends 305 

obtained from global or regional averages, to assess whether a  linear trend signal has emerged 306 

from the “background noise” of internal or natural climate variability, as estimated by the 307 

models.  The primary focus is on the seven CMIP5 models that have Natural Forcing Only runs 308 

extending to 2010 and the larger set of 23 CMIP5 models that have All Forcing runs that we can 309 

extend to 2010, when necessary, using RCP4.5 projections.  We can use these sets of CMIP5 310 

model runs together to assess whether the observed trends have emerged from the background of 311 

natural variability and whether they contain an attributable anthropogenic component.   We use a 312 

larger sample (23 models) for our All Forcing analysis because we want to compute the best 313 

estimate possible, based on the available models, of the multi-model ensemble mean and its 314 

uncertainty, even though we do not have as many models available to use for the Natural Forcing 315 

Only estimates.  For the eight CMIP3 models that include volcanic forcing (but for which we 316 

generally do not have Natural Forcing Only runs), we can ask a more limited set of questions, 317 

namely whether the linear trend signal in the observations has emerged from the background of 318 

internal climate variability and whether the All Forcing run trends are consistent with the 319 

observed trends.  We can also address this more limited set of questions using the full set of 23 320 

CMIP5 models. 321 

We assess the trends across a wide “sliding range” of start years beginning as early as 1861.  All 322 

trends in the analysis use 2010 as the end year.  The general procedure we use is illustrated in 323 

Fig. 7 (a) for global mean surface temperature.  The black shaded curve in the figure shows the 324 



16 

 

value of the linear trend in observed global mean temperature for each beginning year from 1880 325 

to 2000, in each case with the trend ending in the year 2010.  The HadCRUT4 observed data set 326 

contains an ensemble of 100 estimates, and these are used to create an ensemble of observed 327 

trend estimates.  The black shading depicts the 5th to 95th percentile range of this ensemble. The 328 

first year plotted for global mean temperature was 1880 because the areal coverage and temporal 329 

coverage requirements for a trend to 2010 were reached in that year.  The observed temperature 330 

trend to 2010 is about 0.5oC/100 yr beginning early in the record (late 1800s) and increases to 331 

about 2oC / 100yr by around 1980.   The observed trend has decreased for more recent start 332 

dates, falling below 1oC/100 yr for trends beginning in the late 1990s.  333 

The blue curve in Fig. 7a shows the “mean of ensemble mean trends” for the Natural Forcing 334 

Only runs of the following seven CMIP5 models, each of which has at least one Natural Forcing 335 

Only run in the CMIP5 archive extending to 2010:  CanESM2, CNRM-CM5, CSIRO-Mk3-6-0, 336 

FGOALS-g2, HadGEM2-ES, IPSL-CM5A-LR, and NorESM1-M.  Each of the seven models is 337 

weighted equally in the mean of ensemble means, even if a modeling center provided a greater or 338 

smaller than average number of within-model ensemble members.  The light blue shading in Fig. 339 

7 (a) shows the 5th to 95th percentile range of trend values for the Natural Forcing Only runs, 340 

which is constructed using the long-term drift-adjusted control run variability (Fig. 1 c,d) from 341 

each model.  Under an assumption that internal variability in the control run is not substantially 342 

different from that in the forced runs, we can use the long control run for each model to estimate 343 

the component of inter-realization uncertainty that would be present in the forced trends; this is 344 

helpful, since most centers did not provide enough ensemble members to precisely assess this 345 

component of the uncertainty.   346 
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To prevent any one model from dominating the analysis, our approach also attempts to weight 347 

the various models roughly equally.  Thus even if one modeling center provided a much longer 348 

control run than the others, each of these models would still get an equal weighting in 349 

constructing a multi-model sample of internal climate variability.  Control runs from each of the 350 

seven CMIP5 models contribute equally to the multi-model sample from which the percentile 351 

range is constructed, as long a particular model control run is “eligible” for use, meaning here 352 

that the length of the usable part of the control run is at least three times the length of the 353 

observed trend being examined. 354 

Each randomly selected control run trend (from the seven models used) is combined with that 355 

model’s ensemble-mean Natural Forcing Only trend for that trend length, to create a distribution 356 

of historical Natural Forcing Only trends that include the uncertainty due to both internal 357 

variability and the forced response.  The blue region is the 5th to 95th percentile range of this 358 

distribution of trends, and thus relates to the uncertainty of single ensemble members (which 359 

mimics the real world, itself a “single ensemble member”).  Therefore, the distribution of trends 360 

used to construct the percentile range includes uncertainty due to both the different natural 361 

forcings and responses of the individual models, and the uncertainty due to the internal 362 

variability as simulated in the control runs.  The random resampling approach is necessary 363 

because the available control runs for the various models are of different lengths and yet we 364 

purposely chose to give each available model an equal “vote” in estimating internal variability.  365 

The samples are drawn from the control runs in the form of  150-yr samples with randomly 366 

chosen start dates, and each sample is masked with the observed mask of missing data over the 367 

period 1861-2010 to create data sets with missing data characteristics that are similar to those of 368 

the observations.  The analysis in Fig. 7 (a) shows that observed global temperature trends-to-369 
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2010 of almost any length are detectable compared to the CMIP5 Natural Forcing Only runs and 370 

simulated internal variability—even for trends as short as those beginning around 1990. 371 

The dark red curve and light pink shading in Fig. 7 (a) depict the inter-model mean of ensemble 372 

means and the 5th to 95th percentile uncertainty range for the All Forcing runs (i.e., natural and 373 

anthropogenic forcings combined) and control runs of the full set of 23 available CMIP5 models.  374 

These are constructed in an analogous way to the Natural Forcing Only curves and blue shading, 375 

and thus depict the uncertainty due to both internal variability and to the different models’ 376 

responses to historical climate forcing agents (All Forcings, in this case).  The violet shading in 377 

the plot is the region where the pink and blue shading overlap, indicating that the 5th to 95th 378 

percentile ranges of the All Forcing and the Natural Forcing simulated trends at least partially 379 

overlap.   380 

In Fig. 7 (a), the black (observed) curve is always within the pink (or violet) shaded region, 381 

meaning that global mean temperature trends are not significantly different from the CMIP5 382 

historical All Forcing run ensemble on any time scale, including for the most recent ‘weak 383 

trends’.   384 

When the black shaded curve in Fig. 7a lies entirely within (or above) the pink shaded region and 385 

entirely outside of the blue shaded region, we conclude that the trend from that point to 2010 has 386 

a detectable anthropogenic component. Given that the observed global mean surface temperature 387 

trends with start dates through about the mid-1990s lie within this region of then graph, we 388 

conclude that the observed global surface temperature warming to 2010 is at least partially 389 

attributable to anthropogenic forcing according to these model data and observations.  Inspection 390 

of Fig. 7a further indicates that the detection and attribution result is sufficiently strong that the 391 
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uncertainty associated with the combined effects of internal climate variability, uncertainty in the 392 

model responses to natural forcing, and the uncertainty in the observed ensemble could be a 393 

factor of two larger than shown here and the same conclusion would still hold.for start dates 394 

from the late 1800s to about the mid-20th century.   Our attribution conclusion for anthropogenic 395 

forcing and global mean temperature is not as strong as in IPCC AR4 (Hegerl et al. 2007), partly 396 

because we are not focusing in this study on quantifying the magnitude or fractional contribution 397 

of the anthropogenic forcing.  Rather, our focus is on evaluating the evidence for detectable and 398 

attributable anthropogenic influence on surface temperature in various regions around the globe 399 

and eventually focusing down to the spatial scale of individual gridpoints in the next section of 400 

the study.   401 

 402 

b.  Detection/attribution findings for various regional indices 403 

The sliding trend/ detection and attribution analysis discussed above for global mean temperature 404 

can be applied to a variety of regions around the globe.  Here we briefly summarize the findings 405 

of such an application (panels shown in Figs. 7 and 8). 406 

1) MAJOR LARGE-SCALE REGIONAL INDICES 407 

For global sea surface temperature (SST) (Fig. 7b), trends to 2010 are clearly detectable for 408 

starting years up to about 1990.  The observed trends are only marginally attributable to 409 

anthropogenic forcing for trends beginning around the mid-20th century, otherwise an 410 

attributable anthropogenic signal is clearly apparent for the detectable trends.  For global land 411 

surface temperature (Fig. 7c) an attributable anthropogenic signal is clearly seen in the 412 

observed trends for all start dates from about 1885 up to about 1990, so the case for attribution is 413 



20 

 

slightly more robust than for global sea surface temperature.  The anthropogenic warming signal 414 

is so much stronger over land than over ocean, that it readily detectable and attributable despite 415 

the greater intrinsic variability over land than over ocean. Northern hemisphere temperature 416 

(Fig. 7d) roughly mirrors the results for global temperature and global land temperature, with 417 

robust detection and attribution for start years up to about 1990.  Southern hemisphere 418 

temperature (Fig. 7e) results are similar though not quite as robust as for the Northern 419 

hemisphere, as the start dates with attributable anthropogenic influence extending up to about 420 

1980, rather than 1990.   421 

The northern hemisphere extratropics (30o-90oN) series (Fig. 7f) has robust detection and 422 

attribution up to around a 1990 start date, but the southern hemisphere extratropics (30o-90oS; 423 

Fig. 7g) is slightly less robust than the northern hemisphere, as detection/attribution extends to 424 

starts dates up to about 1980. The trends for the southern extratropics are relatively constant over 425 

a range of start dates from 1900 to 1970, in contrast to northern hemisphere series which shows a 426 

period of higher warming trend rates for trends to 2010 beginning in the second half of the 20th 427 

century.  The southern extratopics trends from 1900 are marginally consistent with the All 428 

Forcing model trends, as they are near the upper edge (95th percentile) of the modeled 429 

distribution. Tropical surface temperatures, which combine land and ocean (Fig. h) regions, 430 

show robust detection and attribution for trends to 2010 with start dates as late as about the late 431 

1970s. 432 

2) REGIONAL SEA SURFACE TEMPERATURE INDICES 433 

Tropical SST’s (20oN-20oS; Fig. 7i) show similar robust detection and attribution results (for 434 

start dates as late as about the 1970s) to those for the tropical surface temperature as a whole.  435 
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Indian Ocean SSTs (Fig. 7j; see Fig. 6 to identify region IO) exhibit robust detection and 436 

attribution for start dates up to about 1990, despite a larger observational uncertainty, particularly 437 

for trends beginning from the 1940s through the 1980s.  The tropical west Pacific (Fig. 7k) and 438 

the tropical east Pacific (Fig. 7l) both show a detectable anthropogenic component for trends to 439 

2010 beginning from the 1880s to about 1920.  However, trends beginning from 1920 to 1970 440 

are only marginally detectable as the black region (observations, including uncertainties) is not 441 

clearly outside of the blue (natural forcing) region. North Pacific SSTs (25o-45oN, Fig. 7m, see 442 

Fig. 6 to identify region), have a detectable anthropogenic component but only for start dates up 443 

to about 1910. A marginally detectable signal is found for start dates up to about 1930 and for a 444 

narrow range of start years in the 1970s.  Otherwise, the trends are not detectable according to 445 

our analysis.  The tropical Indian Ocean / western Pacific “warm pool” region (Fig. 8o) is an 446 

important region as it is a dominant large-scale region for tropical convection.  This region has a 447 

detectable anthropogenic warming trend to 2010 for start dates as late as about 1990.    448 

We analyzed four separate regions of the Atlantic Ocean, as this basin is noted for pronounced 449 

multi-decadal variability.  North Atlantic SSTs (45o-60oN; Fig. 7n) exhibit no detectable trends 450 

outside of the range of natural variability for any start dates, according to our analysis.  This 451 

region is notable for having probably the least detectable signal of any of our study regions 452 

around the globe.  Despite the lack of detectable trends, the observed trends are at least 453 

consistent with the All Forcing runs, which have a very wide 5th to 95th percentile range of trends 454 

due to the large simulated internal variability, as will be shown later in this section.  In the 455 

subtropical north Atlantic (20o-45oN; Fig. 7o) an anthropogenic signal is detected for start 456 

dates from about 1890 to 1920 and around 1970, but otherwise is only borderline detectable up 457 

to about 1980.  In the tropical North Atlantic “main development region” for Atlantic tropical 458 
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cyclones (Fig. 8a), there is a detectable anthropogenic warming to 2010 for start dates up to 459 

about 1960, and then intermittently for start dates up to about 1990.  In the South Atlantic (Fig. 460 

8b), there is a detectable anthropogenic warming for start dates up to the late 1970s.  An 461 

interesting feature in this region is that warming trends from the 1890s are slightly higher than 462 

even the 95th percentile of the model simulations. 463 

3) MAJOR LAND REGION TEMPERATURE INDICES 464 

We now summarize the characteristics of surface temperature trends in major continental 465 

regions, beginning with Eurasia, Africa, and Australia.    The Europe temperature index (Fig. 466 

8c) has detectable anthropogenic warming trends for start dates up to about 1990.  An interesting 467 

feature of the Europe trends is that there is no start date for which the 5th to 95th percentile range 468 

of the All Forcing and Natural Forcing Only simulated trends are not at least partially 469 

overlapping.  That is, in some sense the All Forcing and Natural Forcing trends from the models 470 

are not completely distinguishable from each other.  Nonetheless, the observed trends (even 471 

accounting for observational uncertainty in the HadCRUT4 data set) are clearly outside of the 472 

range of the Natural Forcing trends but lie well within the range for the All Forcing trends.  The 473 

Africa index (Fig. 8d) has detectable anthropogenic warming trends for start dates up to about 474 

the year 2000.  Our analysis of African temperature trends only extends back to start dates 475 

beginning in the mid-1920s, due to more limited data coverage.  For northern Asia (Fig. 8e), 476 

our start dates extend back to the early 1900s and show a clear detectable anthropogenic 477 

warming signal for start dates extending from there up to about 1980.  For southern Asia (Fig. 478 

8f) there is a similarly strong detectable anthropogenic warming signal for start dates extending 479 

from the late 1800s through about 1990.  An interesting feature of the African and southern 480 

Asia results is that the 5th to 95th percentile range of the All Forcing trends from much of the 20th 481 
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century is much wider than the range for the Natural Forcing runs.  Since the contribution from 482 

internal variability (estimated from the control runs) is the same for the two sets of trend results, 483 

the uncertainty range of the All Forcing ensemble mean trends across the models must be 484 

comparable to or substantially larger than the uncertainty due to internal climate variability 485 

alone.  The Australia temperature index (Fig. 8g) shows detectable anthropogenic warming 486 

trends for start dates from the late 1800s to about 1970.   487 

Considering now the land regions of North and South America, the index for Canada (Fig. 8h) 488 

shows detectable anthropogenic warming trends for start dates up to about 1970.  In contrast, for 489 

the Alaska index (Fig. 8i), a detectable anthropogenic warming trend to 2010 is most clear for 490 

start dates over the more limited range of 1940 to 1970.  Trends for post-1970 start dates are 491 

generally not detectable, and trends for start dates from about 1910 to 1940 are only marginally 492 

detectable.  For the continental United States (Fig. 8j) an anthropogenic warming trend to 2010 493 

is detectable for start dates of about 1900 to 1975. For start dates of about 1860 to 1900, the 494 

warming signal is only marginally detectable.  The temperature index for Mexico (Fig. 8k) 495 

indicates that observational uncertainties play an important role for detection and attribution 496 

results in this region. A detectable anthropogenic warming trend is seen for start dates of about 497 

1910-1920 and about 1965-1980, otherwise the trends are not detectable.  In contrast, for the 498 

South America index (Fig. 8 l), the temperature trends to 2010 are mostly detectable for start 499 

dates from about 1910 go 1950, but are not necessarily attributable to anthropogenic forcing for 500 

these periods because the observed trends are not within the pink region (range of All Forcing 501 

simulated trends).  Rather, they appear systematically smaller than the simulated trends, after 502 

accounting for observational uncertainties. Anthropogenic warming trends to 2010 are detectable 503 

for the South America index but only for a limited set of start years in the early 1970s.   504 
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Temperature trends for the southeastern United States index (Fig. 8n)  are of particular interest 505 

because the trend behavior in this region is different from most other land regions around the 506 

globe, as has been pointed out in a number of previous studies  (e.g., Hegerl et al. 2007; Knutson 507 

et al. 1999, 2006).  According to our present analysis, trends to 2010 in this index are detectable 508 

only for a limited range of start years (mid-1950s to the mid-1970s).  For that limited set of start 509 

years, an anthropogenic warming trend to 2010 is detectable in our analysis.  The trends in the 510 

index to 2010 at least are consistent with All Forcing runs for all start years after about 1940, but 511 

the warming trends even after 1940 are for the most part not strong enough to be detectable 512 

against the background of natural forcing and internal climate variability.  This behavior 513 

contrasts with the index for the rest of the continental United States (that lies outside of the 514 

southeastern U.S.) (Fig. 8 m), where an anthropogenic warming trend to 2010 is broadly 515 

detectable for start years ranging from about 1870 to the mid-1970s.    516 

c. Consistency test findings using CMIP3 and CMIP5 models 517 

Our regional temperature indices analysis in subsections 5(a) and 5(b) (i.e., Figs. 7 and 8) 518 

focused on the subset of seven CMIP5 models that had Natural Forcing Only runs that extended 519 

to 2010 and on the full set of 23 CMIP5 models that had All-Forcing runs available. Here we 520 

conduct a complimentary assessment (for a more limited set of regions) that compares the eight 521 

CMIP3 models (All Forcing and control runs) with the full set of 23 CMIP5 models (All Forcing 522 

and control runs).  Where necessary, the All-Forcing 20C3M runs were extended to 2010 using 523 

A1B (CMIP3) or RCP4.5 (CMIP5) projection runs;  this procedure was not tenable for the 524 

Natural Forcing Only runs due to the strong differences in forcing between Natural Only and the 525 

A1B or RCP4.5 scenarios in the early 2000s..  Our analyses for the CMIP3 models (and the 526 

CMIP5 models as shown in the middle column of Fig. 9) only compare internal climate 527 
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variability (control runs) with All Forcing historical runs.   Thus, we cannot use these results to 528 

draw firm conclusions about detection of anthropogenic trends, because an important alternative 529 

hypothesis (Natural Forcing) is not being thoroughly tested in this case.  Nonetheless, we can 530 

draw some conclusions about detection of significant trends (against a background of internal 531 

climate variability) and about consistency of observed trends versus the trends in the All Forcing 532 

20C3M experiments. 533 

Our procedure is illustrated for the global temperature analysis in the top row of Fig. 9 (a-c).  534 

Figure 9c is identical to Fig. 7a and is repeated here for reference only.  Figure 9a shows the 5th 535 

to 95th percentile range for the observed trends to 2010 (black shading); the 5th to 95th percentile 536 

range for the All Forcing runs from the eight CMIP3 models (pink shading, with the red curve 537 

depicting the ensemble mean); and the 5th to 95th percentile range of control run trends from the 538 

same eight CMIP3 models (green shading).  Violet shading illustrates regions of overlap of the 539 

pink and green shaded regions.   Where the black curve lies outside of the green shaded region, 540 

the observed trend is detectable compared to internal climate variability in the CMIP3 runs.  541 

Where the observed curve lies within the pink shading, the observed trend is assessed as 542 

consistent with the CMIP3 All Forcing ensemble of runs.  543 

Figure 9a (CMIP3) indicates that the observed global mean temperature trends to 2010 are 544 

detectable (inconsistent with internal climate variability in the eight CMIP3 models) for start 545 

dates from about 1880 to the mid-1990s, and are consistent with the CMIP3 All Forcing run 546 

trends to 2010 for essentially all start dates from 1880 to 2000.  Similar conclusions are evident 547 

for the 23 CMIP5 models as shown in Fig. 9b.  As noted earlier, similar results are seen for the 548 

CMIP5 models when we incorporate the Natural Forcing Only runs in the tests (Fig. 9c), 549 
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although there the detectability of the observed trend extends to start dates as late as about 1990, 550 

rather than the mid-1990s. 551 

For tropical SST (Fig. 9d-f) the CMIP5 models, including the seven model subset with Natural 552 

Forcing Only runs to 2010 (Fig. 9 f), indicate robust detection and attribution for trends to 2010 553 

with start dates as late as about the late 1970s, as discussed earlier.  The consistency with the All 554 

Forcing runs (all 23 CMIP5 models) is only marginal for a period of start dates around 1960.  A 555 

similar consistency result is seen for the 23 CMIP5 models (Fig. 9e) where we compare their All 556 

Forcing runs with their control variability.  The observed trends to 2010 appear to be detectable 557 

against the internal variability (control run) background of the 23 CMIP5 models for start dates 558 

as late as about 1990.  For the eight CMIP3 models (Fig. 9d), the observed trends to 2010 are 559 

detectable for start dates up to 1990, similar to the CMIP5 models (Fig. 9e).  However, the eight 560 

CMIP3 All Forcing runs are not assessed as being as consistent with the observed trends to 2010 561 

as are the 23 CMIP5 All Forcing runs.  In fact the CMIP3 All Forcing runs appear only 562 

marginally consistent with the observed trends to 2010 for most of the start dates from 1880 563 

through about 1980.   564 

 565 

The North Atlantic (45o-65oN) was highlighted earlier as a region with no detectable trends 566 

compared with the CMIP5 Natural Forcing Only runs and internal climate variability combined 567 

(Fig. 9i).  This is perhaps not surprising, given the substantial intrinsically-generated fluctuations 568 

on multi-decadal time scales in this region (see e.g. Yang et al. 2013).  We see from the green 569 

and violet shaded regions in Figs. 9 g,h that the range of trends to 2010 due to internal climate 570 

variability alone in the CMIP3 and CMIP5 models is quite large and appears to largely account 571 
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for a similar wide range of simulated trends in the All Forcing runs.  This also helps allow the 572 

observed trends to 2010 to be consistent with the CMIP3 and CMIP5 All Forcing trends for all of 573 

the start dates examined, despite the fact that the observed trends are not detectable (i.e., not 574 

distinguishable from control run variability alone).    575 

For the southeastern United States index (Fig. 9 j-l) there is slightly more evidence for 576 

detectable trends to 2010 versus the internal variability samples in Fig. 9 j,k (start years 1950 to 577 

1980) than versus the combined Natural Forcing/internal variability sample of trends (blue 578 

shading in Fig. 9 (l))  with marginally detectable trends for start dates from the mid-1950s to the 579 

mid-1970s).   For start years prior to about 1940, the observations lie near the edge and even 580 

outside of this 5th to 95th percentile range for the All Forcing runs (pink/violet shaded 581 

envelopes), especially for CMIP3 (Fig. 9j).  We thus conclude that even accounting for internal 582 

variability, the CMIP3 and CMIP5 historical runs trends-to-2010 tend to be inconsistent or only 583 

marginally consistent with the observed southeastern U.S. surface temperature trends for starting 584 

dates before about 1940.  This means that the CMIP3 and CMIP5 All Forcing runs can be 585 

falsified, at least for this relatively small region, and further implies that there remain as yet 586 

unexplained discrepancies between the historical simulations and observations for trends in this 587 

region. 588 

The results for the rest of the continental United States outside of the southeastern United 589 

States (Fig. 9 m-o) are fairly consistent between the CMIP3 (m) and the CMIP5 models (n, o), 590 

although as discussed above, the nature of our conclusions are different for Fig. 9 (m and n) than 591 

for Fig. 9 (o), with the latter one including also the ensemble mean and additional uncertainty 592 

range associated with the different model responses to Natural Forcings.    593 
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 594 

6. Grid point-scale detection and attribution tests 595 

a. Multi-model ensemble assessment 596 

1) 1901-2010 TRENDS 597 

The procedures in Section 5 that were used to categorize observed trends at individual grid 598 

points as detectable, attributable in part to anthropogenic forcing, consistent with All Forcing 599 

runs, etc. can be applied at the grid-point scale, and the categories displayed in map form, for a 600 

selected trend period.  For example, Fig. 10 shows the results of such a category analysis for the 601 

observed vs modeled trends for 1901-2010, with the bottom row showing category maps for the 602 

CMIP3 All-Forcing runs (e) and CMIP5 All-Forcing and Natural Only Forcing runs (f).  The 603 

linear trend maps for observed temperature (1901-2010) and the CMIP3 and CMIP5 All Forcing 604 

ensemble means are shown in Fig. 10 (a-d) for reference. The observed trend map shows broad-605 

scale warming trends since 1901 at almost all locations around the globe, with areas of cooling in 606 

only a few regions, mainly in the high latitude North Atlantic and the southeastern United States.  607 

The CMIP3 and CMIP5 multi-model ensemble trends show broadly similar magnitude and 608 

pattern of cooling to that observed, where the agreement can be quantitatively tested by our 609 

consistency tests as described in the previous section.  For the tests described in this section, we 610 

use only the ensemble mean observed trend and thus do not consider observational uncertainty, 611 

which was examined in the previous section. 612 

Figure 10 (f), for the 23 CMIP5 models with All Forcing and the seven CMIP5 models with 613 

Natural Forcing Only runs to 2010, builds upon the regional time series analysis shown in Figs. 614 

7-8.  The white regions in Fig. 10 (f) indicate where the observed trend is not detectable 615 



29 

 

compared to the Natural Forcing only runs (where the uncertainty estimates incorporate both 616 

simulated internal climate variability from the seven control runs and uncertainties in the Natural 617 

Forcing Only ensemble mean).  The dark grey regions in Fig. 10 (f) do not have sufficient data 618 

coverage for our tests.  (To determine if a grid point has “sufficient coverage” to include in our 619 

maps and analyzed area, we divide a given trend period (e.g., 1901-2010) into five roughly equal 620 

periods, and require that each of the five periods has at least 20% temporal coverage in the 621 

monthly anomaly data.)  The various colored (non-white, non-grey) regions in Fig. 10 (f) 622 

indicate where the trends are detectable, with the category identified on the legend.  The orange 623 

regions show where the warming trend is detectable but still less than the lower end (5th 624 

percentile) of the All Forcing trend distribution.  The light and dark red regions indicate where 625 

the observed trend has a detectable anthropogenic component; for the darkest red regions the 626 

observed warming trend is so large that it exceeds the 95th percentile of the modeled distribution, 627 

but here we still interpret this as implying a detectable anthropogenic component.  For cooling 628 

trends (blue regions), we have analogous terms to those used for the various warming cases, 629 

although these cases are almost absent for the 1901-2010 trends in our analysis. 630 

The results for Fig. 10 (f) show that most of the global area with sufficient coverage is 631 

categorized as having attributable anthropogenic warming (either consistent in magnitude or 632 

significantly larger than in the All Forcing runs).  The larger-than-simulated warming trends 633 

occur preferentially in the extratropical South Pacific, the South Atlantic, the far eastern Atlantic 634 

and the far western Pacific.  In only a relatively small percentage of the globe is the observed 635 

trend classified as not a detectable change (white regions in Fig. 10 f).  These include mainly the 636 

mid- to high-latitude North Atlantic, eastern United States, and parts of the eastern tropical and 637 

subtropical Pacific. 638 
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A similar analysis for the CMIP3 All-Forcing runs (eight models with volcanic forcing) is shown 639 

in the left column of Fig. 10 (a,c,e).  The category names for the assessment (Fig. 10 e) are 640 

different than for the CMIP5 models (Fig. 10 f) because a Natural Forcing Only ensemble is not 641 

available in the archive for the CMIP3 models.  Therefore, our categories for CMIP3 (see 642 

legend) are limited to assessing consistency, either with the internal variability of the control 643 

runs or with the All-Forcing runs, and we do not assess the question of attribution to 644 

anthropogenic forcing.  The observed widespread warming trends shown in Fig. 10 (a) are 645 

assessed as detectable (compared with control run or internal climate variability) over most of 646 

the global region with sufficient coverage.  Only in some regions of the North Atlantic and North 647 

Pacific (white regions in Fig. 10 (e) is the observed trend not detectable.  In only a very minor 648 

fraction of the analyzed area is there a detectable cooling trend since 1901 (blue shading in Fig. 649 

10 e), according to our analysis. Orange regions (where the warming trend is detectable but less 650 

than simulated) occur preferentially in the lower latitudes, while regions with significantly 651 

greater than observed warming trends tend to occur more in the extratropics.  This feature is 652 

clearer for the CMIP3 ensemble (Fig. 10 e) than the CMIP5 (Fig. 10 f).  653 

2) 1951-2010 TRENDS 654 

Figures 11 explore how the results seen for 1901-2010 trends in Fig. 10 are altered when we 655 

analyze the trends for 1951-2010 (Fig. 11).  The observed trend map (Fig. 11 a or b) shows much 656 

more spatial structure than the trend map for 1901-2010 (Fig. 10 a or b).  The Asian and North 657 

American extratropical land regions have warmed more since 1951 than the oceanic regions.  658 

This amplification of warming over land since 1951 is also evident in the All Forcing 20C3M 659 

ensemble means for both the CMIP3 (8 models) and CMIP5 (23 and 7 models with 660 

accompanying All Forcing runs and Natural Forcing Only runs to 2010, respectively)—although 661 
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the contrast between the continental and oceanic regions is more pronounced in the observed 662 

trend map than in the multi-model ensembles, especially for CMIP3.  This is also seen in the 663 

category maps (Fig. 11 e, f) where dark red shading (observed warming significantly greater than 664 

simulated) is more prevalent over Asia in the CMIP3 assessment (e) than in the CMIP5 665 

assessment (f).   666 

The observed trend map (Fig. 11 a, b) shows a region of notable cooling over the mid-latitude 667 

North Pacific and a smaller region of cooling trends in the high latitude North Atlantic south of 668 

Greenland.  These cooling regions are assessed as having no detectable change, meaning that the 669 

cooling trends lie within the 5th to 95th percentile range of the simulated trends from the model 670 

control runs (CMIP3) or combined control run/Natural Forcing runs (CMIP5).  Non-detectable 671 

trends for 1951-2010 (white category, Fig. 11 e,f) are found over large regions of the North 672 

Pacific, the central equatorial Pacific, the mid- to high-latitude North Atlantic, the far Southern 673 

Ocean near Antarctica, and in a few scattered continental regions such as the south-central 674 

United States.   675 

Figure 11 (f) indicates where observed trends (1951-2010) are attributable, at least in part, to 676 

anthropogenic forcing (light and dark red regions).  These regions cover most of the global area 677 

that has detectable trends, and for the 1951-2010 trends are comprised predominantly of regions 678 

where the trends are consistent with the All Forcing ensemble for CMIP5 (light red).  Smaller 679 

regions of Asia, the tropical Indian Ocean and South Pacific have strong warming trends that are 680 

attributable in part to anthropogenic forcing but are also significantly larger than simulated in the 681 

CMIP5 All Forcing runs (dark red shading).  The category results for the eight CMIP3 models 682 

(Fig. 11 e) are similar to those for the CMIP5, although the categories in Fig. 11 (e) do not 683 
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include attribution to anthropogenic forcing (see legend), since the CMIP3 set of models does 684 

not include Natural Forcing Only runs that are necessary for such an attribution. 685 

Regions in Fig.11 (e, f) with warming trends that are detectable but significantly less than 686 

simulated in the All Forcing runs (orange regions) are mainly found in the tropical and 687 

subtropical latitudes.  This, combined with the greater prevalence of dark red (stronger than 688 

simulated warming) in the higher latitudes, implies that for the 1951-2010 trends overall, the All 689 

Forcing runs (CMIP3 and CMIP5) tend to exhibit too strong a warming trend at lower latitudes 690 

but too little warming in high-latitudes. 691 

3) 1981-2010 TRENDS    692 

The trend assessment results for 1981-2010 are presented in Fig. 12.  The observed trend map 693 

(Fig. 12 a) has much more spatial structure than for the longer trend periods in Figs. 10a and 11a.  694 

Since 1981 there have been large regions of cooling trends over the tropical and subtropical 695 

eastern Pacific, Gulf of Alaska, and the high latitude Southern Ocean.  The analysis shows that 696 

for the most part, the cooling trends in these regions are not detectable.  In fact, since less than 697 

5% of the globe has “detectable” cooling trends, the percent of occurrence of the blue regions is 698 

not significantly different from what could occur from sampling variability alone.      699 

The large expanse of the globe without detectable trends (1981-2010) in Fig. 12 contrasts with 700 

the earlier finding of detectable warming in most analyzed regions for the longer trend analyses 701 

(Figs. 10, 11). The loss of a detectable signal, as one proceeds to later start dates in the 20th 702 

century--and shorter trend periods--is not unexpected.  For example, the results in Figs. 7-9 703 

showed how the trend rates for internally generated trends in the model become higher for 704 

shorter trend periods, as the models can produce strong internally generated trend rates over 705 
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relatively short periods.   Comparing the category maps for different start dates (Fig. 10-12), the 706 

loss of detectability, as one proceeds to later start dates, occurs first in the extratropical North 707 

Atlantic (north of 40oN) and over large parts of the North Pacific, extending into the tropics, as 708 

seen for the 1951-2010 trends (Figs. 11).   For the late 20th century start dates (e.g., 1981-2010; 709 

Fig. 12) the region of no detectable warming expands to cover most of the southern oceans, south 710 

of 40oS, and extending south from 20oS in the South Atlantic.  This non-detection region also 711 

expands to include most of the eastern tropical and subtropical Pacific and much of the northern 712 

extratropics over Eurasia, North America, and the North Pacific.   713 

Of the regions with detectable trends for 1981-2010 (Fig. 12 e, f), the vast majority of grid points 714 

have trends that are consistent with the models (light red) and are thus at least partly attributable 715 

to anthropogenic forcing (CMIP5; Fig. 12f) or, in the case of the CMIP3 models (Fig. 12 e), at 716 

least consistent with All-Forcing runs.  These areas include large regions of the tropics, 717 

subtropics, and mid-latitudes within about 40-50 degrees of the equator (except for the eastern 718 

Pacific).  The relatively robust emergence of a significant warming signal over a relatively short 719 

time period (30 years) in the lower latitudes, as in Fig. 12 (f), is reminiscent of the recent study 720 

of Mahlstein et al. (2011), who conclude that the earliest emergence of significant greenhouse 721 

warming will occur in the summer season in low-latitude countries.  They examined land regions 722 

and looked at signal emergence for particular seasons (whereas we examine land and ocean 723 

regions and focus on annual means).  However, both studies point toward early emergence of 724 

anthropogenic warming signals in lower latitudes, as opposed to most high latitude continental 725 

regions. Some exceptions we note in Fig. 12 (f) include the significant anthropogenic warming 726 

trends (1981-2010) flanking Greenland and in land regions near the edge of the Arctic Ocean.  727 
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There is relatively little orange area (i.e., detectable warming, but significantly less than 728 

simulated) on the assessment maps for 1981-2010 (Fig. 12 e, f).  The infrequent occurrence of 729 

this category for the later trend start dates can be explained by referring to the sliding trend 730 

analyses in Figs. 7-9.  The unshaded area on those graphs between the pink- and blue-shaded 731 

envelopes, corresponding to detectable warming that is less than simulated, systematically 732 

shrinks as one progresses to later start dates.  That is, for shorter trend periods, it becomes much 733 

more difficult to distinguish the simulated All Forcing trend distribution from the trend 734 

distribution of the Natural Forcing Only runs (CMIP5) or from the control runs (CMIP3).   735 

 736 

4) ENSEMBLE MEAN ASSESSMENT STATISTICS ACROSS TIME 737 

In Fig. 13, we explore how the percent of analyzed areas with various category classifications 738 

changes for different start years (all for trends ending in 2010).  Figure 13(b) shows the 739 

aggregate percent area results for the CMIP5 models, using the 23 models that have All Forcing 740 

runs, and the seven model subset with Natural Forcing Only runs extending to 2010.  The total 741 

percent of analyzed area (i.e., regions with sufficient data coverage) that was assessed as having 742 

attributable anthropogenic warming trends (black curve) was about 75%  for trends over the 743 

period 1901-2010.  This drops to about 60% for start dates from 1931 to 1961, then temporarily 744 

increases again to over 65% for trends 1971-2010, before dropping sharply to about 25% for the 745 

shortest period (1991-2010).  The temporary increase in percent of area with attributable 746 

anthropogenic warming  for the 1971 start date, is apparently due to the temporary pause in 747 

global warming from about 1940 to 1970.  The end of this pause, around 1970, is a time period 748 

during which the prospects for detection of a warming signal are at least temporarily enhanced 749 



35 

 

against a backdrop of a gradually declining percentage as the start date is moved forward through 750 

the 20th century.  The green curve in Fig. 13b (percent of analyzed area with no detectable 751 

change) shows generally opposite behavior to the black curve, increasing from a low of about 752 

10%, for 1901-2010 trends, to a high point of over 60% for the latest start period analyzed 753 

(1991-2010).   The analysis thus illustrates the advantages of a long record for detectability of 754 

the warming trend.  The light green curve (warming that is detected but less than simulated) is 755 

roughly 15% of the analyzed area for start dates through about 1941, then declines for later start 756 

dates as the increasing dominance of internal variability for short trend periods makes it much 757 

more difficult to distinguish the All Forcing and Natural Forcing trend distributions and thus 758 

more difficult for a trend to lie between the two distributions as discussed earlier.   The percent 759 

of area with trends that are attributable to anthropogenic forcing but significantly greater than 760 

simulated (red curve) also diminishes as the start dates move later in the century, possibly 761 

because of the growing width of the simulated trend distributions associated with internal climate 762 

variability, implying that it becomes difficult for an observed trend to be large enough to be 763 

distinguishable from the All Forcing distributions on the high side.   764 

 765 

Figure 13 (a) summarizes the comparison between the CMIP3 and CMIP5 results (solid lines vs. 766 

dashed lines) for various common categories.  To construct this figure we use the percent of 767 

analyzed areas from the CMIP3 eight model ensemble (with volcanic forcing) as shown in Figs. 768 

10-12 (panels a, c, e).  For the CMIP5, we use results for all 23 models that have volcanic 769 

forcing, since a Natural Forcing Only experiment (extending to 2010) is not required for the 770 

comparison in Fig. 13 (a), and thus we are not limited to the seven CMIP5 model subset.  The 771 

percent area where the warming is detected and either consistent or greater than simulated (black 772 
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curves) is about 70% (CMIP3) and over 75% (CMIP5) for the 1901-2010 period, then decreases 773 

for start dates of 1931 or 1941, before rising to a temporary peak of about 70% for the 1971 start 774 

date and then falling again for later start dates.  As discussed earlier, temporary rise for mid-775 

century start dates is likely due to the enhanced detectability of trends that start within the 776 

“relative trough” or temporary interruption of global warming that occurred around this time 777 

following the relative peak in global temperatures around 1940.   For start dates up to about 778 

1931, the black curve for the 23 CMIP5 models (dashed) is about 5% higher on average than the 779 

(solid) one for the eight CMIP3 models.  Thus, the 23 CMIP5 model All Forcing runs appear at 780 

least slightly more consistent with observed trends than the eight CMIP3 All Forcing runs, at 781 

least for the case of trends to 2010 starting earlier than 1940.  However, for trends with start 782 

dates from 1941 through about 1971, the opposite is true, and the CMIP3 All Forcing runs 783 

appear modestly more consistent with observations.  Other features in Fig. 13 (a) are generally 784 

similar to those described for the seven CMIP5 models (Fig. 13 b), although the category 785 

descriptions (conclusions about attribution) are necessarily different.  The general temporal 786 

behavior of the various curves through time is remarkably similar between the solid (CMIP3) 787 

and dashed (CMIP5) models in Fig. 13 (a).  788 

b. Model by model trend assessment 789 

In contrast to the analyses in the previous subsection (Figs. 10-13) which focused on the multi-790 

model ensemble means vs. observations, in this subsection we consider the individual models 791 

within the CMIP3 and CMIP5 ensembles and assess what percentage of individual models meet 792 

certain criteria.  That is, the determination of whether a given CMIP3 or CMIP5 individual 793 

model is included in a category (e.g., “warming- detectable and consistent”) for a given grid 794 

point is based on the evaluation of the historical runs and control runs for that model alone.  In 795 
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this section, we also introduce and apply a variance consistency test as an addition consistency 796 

test for the models vs. observations.   797 

We will introduce and describe the various tests as we discuss the different panels in Fig. 14, 798 

which contains the analysis of the eight CMIP3 models (with volcanic forcing) vs. observations 799 

for linear trends over the period 1901-2010.  Figure 14 (a) and (b) present the observed and 800 

multi-model ensemble mean trend maps for reference; these were discussed earlier for Fig. 10.  801 

Figure 14 (c) shows the fraction (or percent) of models, at each grid point, that have no 802 

detectable trend.  The area-weighted global average of this fraction is 0.09, and the most 803 

prominent regions with no detectable trend are in the North Atlantic (south of Greenland), the 804 

mid-latitude North Pacific, and the southeastern United States.  Figure 14 (d) shows the fraction 805 

of models at each grid point with warming that is detectable but less than simulated in the All 806 

Forcing runs.  The global average fraction is 0.22, and the most prominent region of occurrence 807 

is in the tropics, meaning that the models tend to simulate too rapid a century-scale warming in 808 

the tropics.  The warming is detectable and consistent with the All Forcing runs for a global 809 

average fraction of 0.34 of the models (Fig. 14 e), with a spatial pattern that is fairly evenly 810 

distributed around the analyzed areas of the globe.  The warming is detectable and significantly 811 

greater than simulated for a global average fraction of 0.32 of the models (Fig. 14 f), with the 812 

most prominent occurrence of this category being in the mid- to high latitudes of both 813 

hemispheres.  Warming is detectable for about 89% of the models, on average around the globe 814 

(Fig. 14 g)—essentially the inverse of the results in Fig. 14 (c).  Warming is detectable and 815 

consistent or greater than simulated for two thirds of the models, on average, (Fig. 14 h) which 816 

shows essentially the inverse of the pattern in Fig. 14 (d), and indicates that the simulated 817 

warming tends to be too weak in mid to higher latitudes in the CMIP3 All Forcing runs.  The 818 
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observed and CMIP3 simulated (All Forcing) trends are assessed as consistent for 39% of the 819 

models on average (Fig. 14 i); this category includes cases where the trend is not detectable, but 820 

still consistent with the All Forcing runs.  The fraction field for the models has a fairly even 821 

spatial distribution over the global analyzed area. 822 

One limitation of our approach is that models with unrealistically large internal variability have 823 

some advantage over models with more realistic variability, in that it is easier for high-variability 824 

models to have trends that are consistent with observations, since the margin of error is greater.  825 

To address this concern, we apply a second test (a variance consistency test) to the models.  Then 826 

a model that has both a consistent trend and consistent variability, compared with observed 827 

estimates, will be ranked more highly in a metric test compared with a model with consistent 828 

trends but inconsistent variability.  In other words, this expands our consistency tests into a two-829 

dimensional space (trend and internal variability).   830 

The variance consistency test for the eight CMIP3 models with volcanic forcing is constructed as 831 

follows.   For each grid point, we form the observed residual time series for the period 1901-832 

2010, which is defined as the observed minus the CMIP3 eight-model ensemble mean All 833 

Forcing series.  We filter this residual time series with a low pass smoother that transmits 834 

variance on time scales of about 10 years or greater, which are the time scales most relevant to 835 

the issue of long-term trends.  We then compute the standard deviation of the low-pass filtered 836 

observed residual series.  For each of the CMIP3 models, we draw many 110-yr samples from 837 

the drift-adjusted control runs (see Section 3 a) and with the samples having random start dates.  838 

For each of these 110-yr segments, the control model data is masked with the observed mask for 839 

the given grid point, then low-pass filtered, and the standard deviation computed. A distribution 840 

of the standard deviations for the control run is computed for each grid point and model.  If the 841 
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standard deviation of the observed residual series lies within the 5th to 95th percentile range of the 842 

control run distributions, the model is assessed as having low-frequency internal climate 843 

variability that is consistent with the observations according to this test.  There are some 844 

important limitations of this test, which we recognize at the outset.  When applied to a single 845 

model, as done here, a single model’s control run may not be long enough to provide an adequate 846 

sample of the 5th to 95th percentile range of low-frequency (>10 yr ) variance estimates; indeed, 847 

this is an important reason to advocate for longer control runs (or larger ensemble sizes) in future 848 

CMIP designs.  In addition, the observed residual, which is needed for comparisons with control 849 

run variability, has some uncertainties, as the multi-model ensemble mean forced response only 850 

approximately removes the forced climate signal from the observations.  851 

Figure 14 (j) illustrates the results of applying this test.  On average, 25% (two of the eight) 852 

CMIP3 models have variability consistent with observations, according to the test.  The 853 

occurrence of the consistent model and variance has a fairly even distribution around the globe, 854 

although the fraction is notably low in the southeastern Pacific and south Atlantic basins.   855 

Figure 14 (k) shows the map of the fraction of the CMIP3 models where both the variability and 856 

trend are consistent with observations according to our tests.  The global average fraction is 11%, 857 

indicating that achieving consistency with both tests simultaneously at the grid point scale is a 858 

challenge for most models.   The variance consistency test can also be applied to the global mean 859 

temperature series (e.g., Figs. 4b, 5c, and 9a).   We find that six of the eight CMIP3 models 860 

(75%) have low-frequency variance for their global mean temperature that is consistent with the 861 

observed residual, according to our test.    862 
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 Figures 15 and 16 present the same analysis as Fig. 14, but for the 23 CMIP5 models with All 863 

Forcing runs (Fig. 15), and for the subset of seven CMIP5 models that have at least one Natural 864 

Forcing Only run extending to 2010 (Fig. 16).  The mapped results for the 23 CMIP5 models 865 

(Fig. 15) are rather similar overall and have similar spatial features to those for the CMIP3 866 

models (Fig. 14) discussed above.  One notable difference is that the CMIP5 models in both Fig. 867 

15 and Fig. 16 have a substantially greater global mean fraction of models with consistent low-868 

frequency variance (0.36-0.37) than the CMIP3 models in Fig. 14 (0.25).  Consequently, the 869 

globally averaged fraction of models that have both consistent trend and variance (panel k) is 870 

modestly higher in CMIP5 (0.14-0.15) than in the CMIP3 sample (0.11).  Figure 16, for the 871 

seven model subset of CMIP5 models, can be used to assess whether trends contain attributable 872 

anthropogenic trend contributions.   The analysis indicates that the globally averaged percent of 873 

the seven CMIP5 models with attributable anthropogenic warming at the grid point scale over 874 

the 1901-2010 period is 70% (Fig. 16 h).  The globally averaged percentage of models with both 875 

attributable anthropogenic warming and consistent low-frequency variance is 27%, according to 876 

the tests described above (Fig. 16 l). 877 

The variance consistency test can also be applied to the global mean temperature series for both 878 

the full set of 23 CMIP5 models and the seven model subset of CMIP5 models.  This test 879 

indicates that 30% of the 23 CMIP5 models, and 14% of the CMIP5 model subset (one of 880 

seven), have low-frequency variance that is consistent with observations. 881 

As mentioned earlier, there are important limitations of our variance consistency test.  We hope 882 

to improve on the variance consistency tests in a future study; for example, and there are other 883 

model-observation comparison paradigms that can be explored (e.g., Annan and Hargreaves 884 

2010).  Meanwhile, we stress the need for longer control runs and/or greater numbers of 885 
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independent ensemble members from the models in order to more robustly assess the various 886 

models’ low-frequency variability. 887 

Figure 17 displays several globally averaged trend consistency metrics as a function of trend start 888 

year for the individual models in the CMIP3 and CMIP5 samples.  Fig. 17 (c, d, and f) also 889 

assess the consistency of the models’ low frequency variability, as these include both the trend 890 

consistency test and the variability consistency test.  In the various panels of Figure 17, we 891 

compare, across the models, the fraction of analyzed area where there is both a detectable change 892 

in observations and where this detectable change is consistent with the individual climate 893 

models.  Note that the metrics examined do not include the fraction of area where a climate 894 

model is consistent with observations but there is not a detectable trend.   895 

While all metrics have shortcomings, the particular metrics in Fig. 17 have at least some useful 896 

compensation properties.  For example, for a model with unrealistically large internal variability, 897 

the enhanced potential for consistency of modeled and observed trends due simply to the larger 898 

internal variability is partly compensated by a reduction in the area assessed as having detectable 899 

trends according to that model.  The two-dimensional (trend and low-frequency variance) 900 

consistency tests provide for an even greater compensating balance against the potential metric 901 

problem mentioned above.   902 

The results in Fig. 17 (a, b) show that the individual CMIP3 and CMIP5 models have rather 903 

similar behavior in terms of fraction of globally analyzed area with consistent detectable trends 904 

(typically ranging from 20 to 50%).  There is somewhat more spread among the CMIP5 models, 905 

although there are more models in the CMIP5 sample as well.  This trend consistency metric 906 

tends to reach a peak value around 1960-1970 start dates before declining for later start dates, for 907 
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reasons discussed for  Fig. 13.  When a variance consistency test is added (Fig. 17 c,d), the 908 

percent of analyzed global area with both consistent trends and consistent low frequency 909 

variance drops substantially, to typically about 10 to 20%.   910 

For the seven-model CMIP5 sample (Fig. 17 e), the percent of analyzed global area with 911 

attributable anthropogenic trends is close to 80% for 1901-2010 trends, for five of the seven 912 

models, with the remaining two models having lower percent area (40-60%).   All seven models 913 

end up in the range of 35-65% for this metric for the latest starting date analyzed (1991).  The 914 

metric that tests for both attributable anthropogenic trend and consistent low-frequency variance 915 

(Fig. 17 f), indicates that the seven models have a range of percent area of 20-35% for the 1901-916 

2010 trends, but this range decreases to 10-18% for the 1991-2010 trends.  Clearly the variance 917 

consistency test proposed here can pose a challenging test for the current models.  We have plans 918 

to explore other types of variance consistency tests in our future work.   919 

7.  Supplemental material and further sensitivity studies 920 

The analysis presented in this study introduces a framework for trend analysis that has many 921 

possible applications and extensions.  For surface temperature, there are many figures that are 922 

variations on the ones presented here, but were too numerous to include in this article.  923 

Therefore, we have created a web site based largely on this analysis, but which contains 924 

additional supplemental figures (http://www.gfdl.noaa.gov/surface-temperature-trends). For 925 

example, the web site contains plots for individual seasons that complement the annual-averaged 926 

analysis in this study.  We show plots using alternative percentiles (97.5th and 2.5th ) instead of 927 

95th and 5th, and plots excluding certain low variability models from the analysis, etc. Additional 928 

regional plots like Figs. 7-9, including ones for individual seasons, are available, as well as maps 929 
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for different trend start dates.  In addition, a number of plots based on analysis of individual 930 

CMIP3 or CMIP5 models, as opposed to multi-model ensemble means, are available.  931 

 932 

 933 

8. Summary and Conclusions 934 

The purpose of this analysis has been to introduce and apply a framework for assessing regional 935 

surface temperature trends using both the CMIP3 and CMIP5 models and using a multi-model 936 

sampling approach.  We examined the behavior of the various control runs for the CMIP3 and 937 

CMIP5 models, and used the control run variability to help assess whether observed trends were 938 

unusual or not compared with the models’ internally generated variability.  We also used the 939 

control run variability to help assess whether observed trends were consistent with trends from 940 

the historical (20C3M) simulations—either runs with All Forcings or runs with Natural Forcing 941 

Only.  In cases for the CMIP5 models where trends were demonstrated to be inconsistent with 942 

Natural Forcing Only, but consistent with the All Forcing runs, we conclude that an attributable 943 

anthropogenic component is present in the observed trend.  For cases, such as the CMIP3 model 944 

assessments, where Natural Forcing Only runs are generally not available, we test for detectable 945 

trends (compared to internal climate variability) and for consistency between observed and All 946 

Forcing historical (20C3M) runs.  947 

In the separate CMIP3 and CMIP5 analyses, we generally attempt to give different models equal 948 

weight, even when a modeling center provides fewer ensemble members or shorter control runs.  949 

Tests are applied at global and regional scales, as well as at individual grid points on the 950 

observed data grid where there is sufficient data coverage over the period of the trend.  Results 951 
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are summarized using classification maps and global percent area statistics.  Our analysis 952 

contains a substantial assessment of the variability in the models, including control run time 953 

series for visual inspection, standard deviation maps, spectral analysis, and a low-frequency 954 

variance consistency test that is applied to individual models.   955 

One of the most important results from the assessment is the identification of regions—and even 956 

grid points--where an anthropogenic warming signal is detectable in the observed temperature 957 

records.  For trends over the period 1901-2010, a large fraction (about 75%) of the global area 958 

(with sufficient data coverage over time) has a detectable anthropogenic warming signal.  959 

Regions where the observed warming seems to be most commonly underestimated by the models 960 

include the southern Ocean, south Atlantic, and off the east coast of Asia.  The main regions 961 

without detectable warming signals include the high latitude North Atlantic, the eastern U.S., and 962 

parts of the eastern Pacific.  Moving forward in time, for the much shorter period (1981-2010) 963 

the observed warming trends over about 45% of the globe are assessed as having a detectable 964 

anthropogenic contribution.  These regions include parts of the tropics, subtropics, and mid-965 

latitudes (within about 40-45 degrees of the equator), and a narrow zonally oriented band near 966 

the Arctic Ocean.  Areas without detectable trends (1981-2010) include much of the eastern 967 

Pacific--which is a region influenced by strong interannual variability associated with ENSO--968 

and many extratropical regions poleward of about 40oN and 40oS.  The CMIP3 models and the 969 

larger sample (23 models) of CMIP5 models yield results similar to those described above, 970 

although for these samples we assess only the consistency of trends, and not whether they 971 

contain an  attributable anthropogenic component (due to the lack of Natural Forcing runs with 972 

which to do such an assessment). 973 
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The reduced global area with detectable anthropogenic trends as one examines later start dates 974 

for trends in the record (all trends ending in 2010) illustrates the advantages of long records for 975 

trend detection in the context of this model-based assessment.  In general, the shorter the epoch, 976 

the larger the potential contribution of internal variability to the trend, leading to a greater spread 977 

(uncertainty) for sampled trends. 978 

There are numerous examples of modeled trends or variability that are inconsistent with 979 

observations in our study.  As has been noted in a previous paper using a similar methodology 980 

with two climate models (Knutson et al. 2006), disagreement between modeled and observed 981 

trends in this type of analysis can occur due to shortcomings of models (internal variability 982 

simulation; response to forcing), shortcomings of the specified historical forcings, or problems 983 

with the observed data.  As one example, Wu and Karoly (2007) and Wu (2010) have noted that 984 

disagreement between simulated and observed regional surface temperature trends can result 985 

from shortcomings of models in simulating the observed warming associated with the changes of 986 

the leading climate variability modes (such as the Arctic Oscillation). Concerning observational 987 

uncertainty, the HadCRUT4 data set (Morice et al. 2012) contains 100 ensemble members that 988 

attempt to characterize the uncertainties in the observations.  We have performed some 989 

preliminary tests using these ensembles to assess the spread of observed trend estimates.  These 990 

tests thus far indicate that even at the regional scale, the spread in trend estimates due to 991 

observational uncertainties, as contained in the ensembles, is generally much smaller than the 992 

spread in model simulated trends due to the internal variability and differences in forced 993 

responses in the historical runs (e.g., Figs. 7-9).  However, in some regions (e.g., Mexico), the 994 

uncertainty in the observations plays an important role in the assessment of detectable 995 

anthropogenic contributions to trends 996 
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We have attempted to at least partially address the issue of model uncertainties in the simulation 997 

of internal climate variability and in the response to historical forcing by using multi-model 998 

ensembles and by assessing consistency of both trends and low-frequency variability.  When we 999 

apply a two-dimensional screening test (assessing consistency of both the trend and low-1000 

frequency variability) we find that most models tend to be challenged to be consistent on both 1001 

tests. Overall, our variance consistency tests suggest that while the CMIP3 and CMIP5 models 1002 

provide a plausible representation of internal climate variability, there is considerable scope for 1003 

improvement in the model simulations of internal climate variability, apart from their simulation 1004 

of trends and variability in response to various forcing agents.  From a different perspective, Shin 1005 

and Sardeshmukh (2011) have concluded that the CMIP3 models do not simulate historical 1006 

trends of temperature and precipitation as realistically as do atmospheric models forced by 1007 

observed trends in tropical SSTs—a problem they attribute to model errors as opposed to climate 1008 

noise (internal variability). 1009 

The CMIP3 and CMIP5 simulations used here represent  “ensembles of opportunity” which 1010 

cannot necessarily be expected to represent the true structural uncertainty in results, due to 1011 

shortcomings/uncertainties in the models and climate forcings.  The procedures in our paper 1012 

assume that the intrinsic internal variability of climate has not changed significantly since pre-1013 

industrial times, as we are using control run variability from pre-industrial control runs for our 1014 

forced-run consistency tests.  If anthropogenic forcing had actually weakened the intrinsic 1015 

variability in the real world, then our estimated uncertainty range around the All-Forcing model 1016 

responses would be too wide -- making it overly difficult to conclude that observations were 1017 

inconsistent with the All-Forcing runs.  Similarly, if anthropogenic forcing had actually 1018 

strengthened the intrinsic variability in the real world, then our estimated uncertainty range 1019 
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around the All-Forcing model responses would be too narrow -- making it too easy to conclude 1020 

that the observations were inconsistent with the All-Forcing runs.     1021 

While the above uncertainty issues lack a final resolution, the methodology shown here can at 1022 

least help to quantify the uncertainties associated with the climate change detection and 1023 

attribution problem.  The results show that when CMIP3 and CMIP5 historical runs are 1024 

confronted with observed surface temperature trends, across a wide range of trend start dates, at 1025 

various geographical locations around the globe, and even down to the grid point scale, a 1026 

pervasive warming signal is found that is generally much more consistent with simulations that 1027 

include anthropogenic forcing than with simulations that include either no forcing changes 1028 

(control runs) or that include only natural forcing agents (solar, volcanic).  Our conclusions about 1029 

detectable anthropogenic contributions to the trends provides further support for the claim of a 1030 

substantial human influence on climate, via anthropogenic forcing agents such as increased 1031 

greenhouse gases.  A future enhancement of our analysis would include an attempt to quantify 1032 

the contributions of different natural and anthropogenic forcing agents in the CMIP5 All-Forcing 1033 

and Natural Forcing Only historical runs.  This would provide a more direct assessment of the 1034 

relative influence of different forcing agents on the observed temperature trends at the regional 1035 

scale.  1036 
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Figure Captions   1152 

 1153 

Fig. 1.  Time series of global-mean annual-mean surface air temperature (2 m) anomalies from 1154 

the CMIP3 (a, b) and CMIP5 (c, d) preindustrial control runs (black curves).   Observed global 1155 

mean surface temperature (HadCRUT4, combining SST and land surface air temperature 1156 

anomalies) is also shown in blue on the diagrams for comparison.  The blue curves labeled 1157 

“Residual (HadCRUT4…” were created by subtracting the multi-model ensemble mean surface 1158 

temperature (from masked SSTs and land surface air temperatures from the 20C3M All Forcing 1159 

historical runs for either CMIP3 or CMIP5) from the observed temperature.  Orange straight 1160 

lines (one or two segments) through the control run time series depict the long term linear drift.  1161 

The long term drift over the year range shown is calculated at each grid point and then subtracted 1162 

from the model control run series before performing further analysis in our study.  Short vertical 1163 

orange segments denote two places where control runs were divided into two separate segments 1164 

and the linear drift computed separately for each segment.  In that case, the residuals from the 1165 

drift were formed and then combined back into a single series. The various curves in the figure 1166 

have been displaced vertically by arbitrary constants for visual clarity.  Curves labeled with a ‘*’ 1167 

denote CMIP3 models that did not include volcanic forcing in their historical runs.  Curves 1168 

labeled with a ‘(0)’ were excluded from the remainder of our analysis due to various issues such 1169 

as discontinuities in time series, short record length, or unavailable sea surface temperature data 1170 

in the CMIP3 archive. Vertical axis tic mark spacing is 0.2oC. 1171 

 1172 
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Fig. 2.  Standard deviation (oC) of annual mean surface air temperature from the CMIP3 pre-1173 

industrial control runs. The long term linear drifts (time periods identified by the orange line 1174 

segments in Fig. 1 a,b) were removed prior to computing the standard deviations. The individual 1175 

plots are labeled with the name of the model/center and classified as “Non-V” (non-volcanic) or 1176 

“V” (volcanic) depending on whether that model’s historical run used in this study included 1177 

volcanic forcing.  Note that the control runs on which the figure are based do not have episodic 1178 

volcanic forcing and have been masked for observed missing data periods.  The panel labeled 1179 

“All-model mean” is the average of the individual model panels.  The final panel (“HadCRU4 1180 

Observed”) is an observational estimate of internal variability of SST (oceanic regions) and 1181 

surface air temperature (land regions) constructed by removing the CMIP3 eight-model 1182 

ensemble (All Forcing; Volcanic models only) estimate of the forced climate response from the 1183 

observed temperature record over 1949-2010.  The number at upper right on each panel is the 1184 

spatial correlation of that model’s field with the observed standard deviation field.   1185 

 1186 

Fig. 3.  As in Fig. 2 but for the 23 CMIP5 models analyzed in this study. The final panel 1187 

(“HadCRUT4 Observed”) is an observational estimate of internal variability of SST (oceanic 1188 

regions) and surface air temperature (land regions) constructed by removing the CMIP5 23-1189 

model ensemble (All Forcing) estimate of the forced climate response from the observed 1190 

temperature record over 1949-2010. 1191 

 1192 

Fig. 4.  Time series of global mean surface temperature anomalies (combined SST and land 1193 

surface air temperature) from observations (HadCRUT4; black curves) in degrees Celsius.  The 1194 
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red curves in a-c depict the 5th and 95th percentiles of annual mean anomalies for the multi-model 1195 

mean (thick) or of single model realizations (thin lines, gray stippling) for the CMIP3 (a, b) or 1196 

CMIP5 (c) 20C3M historical All Forcing runs in degrees Celsius.  The mean curve is not shown 1197 

but lies approximately midway between the 5th and 95th percentiles. The series in (a) are from 1198 

eight CMIP3 models run with volcanic forcing. The historical runs in (b) include 19 CMIP3 1199 

models with and without volcanic forcing (as identified in Fig. 1 (a,b).  All of the 23 CMIP5 1200 

model runs included in the computations (c) incorporated volcanic forcing.  In (d) the blue 1201 

curves are based on seven CMIP5 models that had Natural Forcing Only runs extending through 1202 

2010.  See text for description of how the confidence limits were computed.  The time series 1203 

have been re-centered so that the ensemble mean value, averaged for the years 1881-1920, is 1204 

zero.  Model data were masked with the observed spatially and temporally evolving missing data 1205 

mask.  The total number of individual experiments included in each panel was: a) 26; b) 51; c) 1206 

79; and d) 25.  1207 

 1208 

Fig. 5.  Variance spectra as a function of frequency for observed global mean surface 1209 

temperature (combined SST and land surface air temperature), in black with 90% confidence 1210 

intervals shown by the shading, plotted against spectra for the individual (a) CMIP3 and (b) 1211 

CMIP5 All Forcing historical runs with Volcanic forcing (red) based on the time series in Fig. 4 1212 

(a,c).  The spectra in (c) and (d) are based on residual observed or model historical run time 1213 

series, where the multi-model ensemble surface temperature from the 20C3M All Forcing (with 1214 

volcanic) historical runs (CMIP3 or CMIP5) is subtracted from the observed and from each 1215 

model’s global mean temperature series to form residual time series prior to computing the 1216 

spectra  (see text for details). 1217 
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 1218 

Fig. 6.  Map illustrating averaging regions examined in Figs. 7-9.  Regions abbreviations 1219 

including:  Euro = Europe; NAs = Northern Asia; SAs = Southern Asia; Afr = Africa; IO = 1220 

Indian Ocean; Aus = Australia; TWP = Tropical western Pacific; TEP = Tropical eastern Pacific; 1221 

IOWP = Tropical Indian Ocean/western Pacific warm pool; NP = North Pacific; AL = Alaska; 1222 

SEUS = Southeastern United States;  ConUS = Continental United States; RofUS =  rest of 1223 

continental United States, other than SEUS; SAmer = South America; Can = Canada; NAtl = 1224 

North Atlantic; SNA = Subtropical North Atlantic; TNA = Tropical North Atlantic (Main 1225 

Development Region); SAtl = South Atlantic.  1226 

 1227 

 Fig. 7.  Trends (oC/100 yr) in area-averaged annual-mean surface temperature as a function of 1228 

starting year, with all trends ending in 2010.  The black curves are trends from observations 1229 

(HadCRUT4), where observational uncertainty is depicted as a range showing the 5th to 95th 1230 

percentile ranges of trends obtained using the 100-member HadCRUT4 ensemble.  Red curves 1231 

are ensemble means of the All-Forcing runs from 23 CMIP5 models. Blue curves are ensemble 1232 

means for Natural Forcing Only runs using a subset of seven CMIP5 models that had Natural 1233 

Forcing runs extending to 2010.  See Fig. 6 for definitions of averaging regions.  The different 1234 

models are weighted equally for the multi-model ensemble means, regardless of the number of 1235 

ensemble members they had.  The pink shading shows the 5th to 95th percentile range of the 1236 

distribution of trends obtained by combining random samples from each of the 23 CMIP5 model 1237 

control runs together with the corresponding model’s ensemble-mean forced trend (All Forcing 1238 

runs) to create a total multi-model distribution of trends that reflects uncertainty in both the 1239 
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forced response and the influence of internal climate variability.  The blue-shaded region shows 1240 

the same, but for the seven models with Natural Forcing Only runs and their seven control runs.  1241 

Violet shading indicates where the pink- and blue-shaded regions overlap.  Gaps in the curves 1242 

indicate inadequate data coverage for a trend-to-2010 for those start years.  Requirements 1243 

include: 33% areal coverage to define an index time series point for a month, 40% of months 1244 

available for a year to be non-missing, and 20% of all years available in each of five equal 1245 

segments for a time series have adequate coverage for a trend. The seven CMIP5-model subset 1246 

used here and in subsequent assessment figures that incorporate Natural Forcing runs include: 1247 

CanESM2, CNRM-CM5, CSIRO-Mk3-6-0, FGOALS-g2, HadGEM2-ES, IPSL-CM5A-LR, and 1248 

NorESM1-M. 1249 

 1250 

Fig. 8.  As in Fig. 7, but for additional regions as labeled (see Fig. 6). 1251 

 1252 

Fig. 9.  As in Fig. 7, but for additional regions as labeled (see Fig. 6). The left column is based 1253 

on All Forcing runs from eight CMIP3 models that include volcanic forcing in their historical 1254 

simulations, and the eight corresponding control runs (without volcanic forcing).  The middle 1255 

column is based on All Forcing and control runs from all 23 CMIP5 models.  The right column is 1256 

based on All Forcing, Natural Forcing Only, and control runs from the same sets of CMIP5 1257 

models as used in Figs. 7 and 8 (see Fig. 7 caption). 1258 

 1259 
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Fig. 10.  Geographical distribution of surface temperature trends (1901-2010) in:  (a,b) 1260 

HadCRUT4 observations; (c) CMIP3 eight-model ensemble mean (All Forcing, volcanic 1261 

models); d) CMIP5 23-model ensemble mean (All Forcing, volcanic models).  Unit:  degrees C 1262 

per 100 yr.  In (e, f) the observed trend is assessed in terms of the multi-model ensemble mean 1263 

trends and variability in the historical forcing and control runs (CMIP3 and CMIP5).  The 1264 

different colors in (e, f) depict different categories of assessment result; the categories are listed 1265 

in the legends below panels e and f. Panel (e) compares observed trends with trends from 8 1266 

CMIP3 All Forcing models and their 8 control runs.  Panel (f) compares observed trends with 1267 

trends from 23 All-Forcing CMIP5 models and their 23 control runs and with the 7 All Forcing 1268 

CMIP5 model subset and their 7 control runs. 1269 

 1270 

Fig. 11.  Same as Fig. 10 but for trends from 1951 to 2010. 1271 

 1272 

Fig. 12.  Same as Fig. 10 but for trends from 1981 to 2010. 1273 

 1274 

Fig. 13.  Summary assessment of observed vs. model ensemble-mean trends-to-2010. The 1275 

percent of global analyzed areas meeting certain criteria (see graph labels) are shown as a 1276 

function of start year (all trends ending in 2010).  a) Assessments of the 8 CMIP3 (solid lines) vs. 1277 

the 23 CMIP5 (dashed lines) multi-model ensemble mean (historical 20C3M All-Forcing runs 1278 

with volcanic forcing and associated control runs).  b) Assessment of the CMIP5 multi-model 1279 

ensemble means and control runs using all 23 CMIP5 models and their 23 control runs for the 1280 

All-Forcing assessment and the seven-model subset of CMIP5 models (with Natural Forcing 1281 
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Only runs extending to 2010) and their seven control runs for the Natural-Forcing assessment.  1282 

The black curves are the sum of the red and orange curves; the sum of black + light green + dark 1283 

green + blue = 100%. 1284 

 1285 

Fig. 14.  Geographical distribution of:  (a) HadCRUT4 observed or (b) CMIP3 multi-model 1286 

(volcanic models) ensemble mean surface temperature trends (1901-2010) in degrees C per 100 1287 

yr.  The observed trend is assessed in terms of the eight individual CMIP3 models (trends and 1288 

variability) in (c-k).  Panels (c-k) show the fraction of the eight individual CMIP3 models whose 1289 

historical All Forcing runs meet the criteria listed above each panel.  The criteria are:  c) no 1290 

detectable change; d) warming that is detectable but significantly greater than simulated in the 1291 

All Forcing runs; e) warming that is detectable and consistent with the All Forcing runs; f) 1292 

warming that is detectable but significantly less than simulated in the All Forcing runs;  g) 1293 

warming that is detectable; h) warming that is detectable and either consistent with or greater 1294 

than the simulated (All Forcing) runs; i) observed and simulated trends are consistent (though the 1295 

observed trend may not be detectable); j) observed and simulated internal low-frequency 1296 

variability are consistent; and k) conditions for (i) and (j) are both satisfied (i.e., the simulated 1297 

variability and trend are both consistent with observations. The white numbers at the bottom of 1298 

maps c-k indicate the area-weighted global average of the mapped fields. 1299 

 1300 

Figure 15.  Same as Fig. 14, but for 23 CMIP5 models with volcanic forcing. 1301 

 1302 
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Fig. 16. Geographical distribution of:  (a) HadCRUT4 observed or (b) CMIP5 multi-model 1303 

(volcanic models) ensemble mean surface temperature trends (1901-2010) in degrees C per 100 1304 

yr.  The observed trend is assessed in terms of trend and variability using the seven CMIP5 1305 

models that had available an All Forcing ensemble and an ensemble of Natural Forcing Only 1306 

runs extending to 2010.  Panels (c-l) show the fraction of the seven individual CMIP5 models at 1307 

each grid point whose All Forcing, Natural Forcing Only, and control runs together meet the 1308 

criteria listed above the panel.  The criteria are:  c) no detectable change; d) warming that is 1309 

detectable (inconsistent with Natural Forcing runs) but significantly less than simulated in the 1310 

All Forcing runs; e) attributable anthropogenic warming that is detectable (inconsistent with 1311 

Natural Forcing Only runs) and consistent with the All Forcing runs; f) attributable 1312 

anthropogenic warming that is significantly greater than simulated in the All Forcing runs;  g) 1313 

warming that is detectable; h) total attributable to anthropogenic warming (i.e., sum of (e) and 1314 

(f); i) observed and simulated trends are consistent (though the observed trend may not be 1315 

detectable); j) observed and simulated internal low-frequency variability are consistent; k) 1316 

conditions for (i) and (j) are both satisfied (i.e., the simulated variability and trend are both 1317 

consistent with observations; and l) conditions for (h) and (j) are both satisfied (i.e., there is 1318 

attributable anthropogenic warming and low-frequency variance is consistent with observations).  1319 

 1320 

Fig. 17.  Individual CMIP3 (a, c) and CMIP5 (b, d, e, f) models are assessed for consistency with 1321 

detectable observed surface temperature trends-to-2010 (a-d), for attributable anthropogenic 1322 

trends (e, f), and for consistency of simulated internal variability (c, d, f).  Trend results are 1323 

shown for start years from 1901 to 1991 (all trends ending in 2010).  Plotted is the percent of 1324 

analyzed global area where each individual model’s (legend) multi-realization ensemble mean 1325 
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forced trend and internal variability meet the criteria listed above the panel.  The trends are 1326 

analyzed at each grid point where there is sufficient temporal data coverage for the trend in 1327 

question (see text). Note that panel (f) includes areas where the observed trend is detectable but 1328 

greater than simulated, whereas panel (d) includes only areas with trends that are detectable and 1329 

consistent with simulations.   1330 

1331 
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1332 Model control runs:  simulated internal variability of global temperature 

Fig. 1 
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Fig. 1.  Time series of global-mean annual-mean surface air temperature (2 m) anomalies from the CMIP3 1333 

(a, b) and CMIP5 (c, d) preindustrial control runs (black curves).   Observed global mean surface 1334 

temperature (HadCRUT4, combining SST and land surface air temperature anomalies) is also shown in 1335 

blue on the diagrams for comparison.  The blue curves labeled “Residual (HadCRUT4…” were created 1336 

by subtracting the multi-model ensemble mean surface temperature (from masked SSTs and land surface 1337 

air temperatures from the 20C3M All Forcing historical runs for either CMIP3 or CMIP5) from the 1338 

observed temperature.  Orange straight lines (one or two segments) through the control run time series 1339 

depict the long term linear drift.  The long term drift over the year range shown is calculated at each grid 1340 

point and then subtracted from the model control run series before performing further analysis in our 1341 

study.  Short vertical orange segments denote two places where control runs were divided into two 1342 

separate segments and the linear drift computed separately for each segment.  In that case, the residuals 1343 

from the drift were formed and then combined back into a single series. The various curves in the figure 1344 

have been displaced vertically by arbitrary constants for visual clarity.  Curves labeled with a ‘*’ denote 1345 

CMIP3 models that did not include volcanic forcing in their historical runs.  Curves labeled with a ‘(0)’ 1346 

were excluded from the remainder of our analysis due to various issues such as discontinuities in time 1347 

series, short record length, or unavailable sea surface temperature data in the CMIP3 archive. Vertical 1348 

axis tic mark spacing is 0.2oC. 1349 

1350 
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1351 

 0    0.2  0.4   0.6  0.8   1.0   1.2  1.4   

Fig. 2.  Standard deviation (oC) of annual mean surface air temperature from the 
CMIP3 pre-industrial control runs. The long term linear drifts (time periods 
identified by the orange line segments in Fig. 1 a,b) were removed prior to 
computing the standard deviations. The individual plots are labeled with the name of 
the model/center and classified as “Non-V” (non-volcanic) or “V” (volcanic) 
depending on whether that model’s historical run used in this study included 
volcanic forcing.  Note that the control runs on which the figure are based do not 
have episodic volcanic forcing and have been masked for observed missing data 
periods.  The panel labeled “All-model mean” is the average of the individual model 
panels.  The final panel (“HadCRU4 Observed”) is an observational estimate of 
internal variability of SST (oceanic regions) and surface air temperature (land 
regions) constructed by removing the CMIP3 eight-model ensemble (All Forcing; 
Volcanic models only) estimate of the forced climate response from the observed 
temperature record over 1949-2010.  The number at upper right on each panel is the 
spatial correlation of that model’s field with the observed standard deviation field.   
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1353 

 0    0.2  0.4   0.6  0.8   1.0   1.2  1.4   

Fig. 3.  As in Fig. 2 but for the 23 CMIP5 models analyzed in this study. The final panel 
(“HadCRUT4 Observed”) is an observational estimate of internal variability of SST 
(oceanic regions) and surface air temperature (land regions) constructed by removing the 
CMIP5 23-model ensemble (All Forcing) estimate of the forced climate response from 
the observed temperature record over 1949-2010. 
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1357 

Fig. 4 

        b) CMIP3: All Forcings:  w & w/o volcanic a) CMIP3: All Forcings (w/ volcanic) 

d) CMIP5: Natural forcing only (w/ volcanic) c) CMIP5: All Forcings (w/ volcanic) 

Global Mean Surface Temperature Anomalies 

Fig. 4.  Time series of global mean surface temperature anomalies (combined SST and land 
surface air temperature) from observations (HadCRUT4; black curves) in degrees Celsius.  
The red curves in a-c depict the 5th and 95th percentiles of annual mean anomalies for the 
multi-model mean (thick) or of single model realizations (thin lines, gray stippling) for the 
CMIP3 (a, b) or CMIP5 (c) 20C3M historical All Forcing runs in degrees Celsius.  The 
mean curve is not shown but lies approximately midway between the 5th and 95th 
percentiles. The series in (a) are from eight CMIP3 models run with volcanic forcing. The 
historical runs in (b) include 19 CMIP3 models with and without volcanic forcing (as 
identified in Fig. 1 (a,b).  All of the 23 CMIP5 model runs included in the computations (c) 
incorporated volcanic forcing.  In (d) the blue curves are based on seven CMIP5 models that 
had Natural Forcing Only runs extending through 2010.  See text for description of how the 
confidence limits were computed.  The time series have been re-centered so that the 
ensemble mean value, averaged for the years 1881-1920, is zero.  Model data were masked 
with the observed spatially and temporally evolving missing data mask.  The total number 
of individual experiments included in each panel was: a) 26; b) 51; c) 79; and d) 25.  

 

Global Mean Surface Temperature Anomalies 
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1358 
a) CMIP3 global mean temp. spectra b) CMIP5 global mean temp. spectra 

c) CMIP3 global temp. residual spectra d) CMIP5 global temp. residual spectra 

Fig. 5.  Variance spectra as a function of frequency for observed global mean 
surface temperature (combined SST and land surface air temperature), in black 
with 90% confidence intervals shown by the shading, plotted against spectra for 
the individual (a) CMIP3 and (b) CMIP5 All Forcing historical runs with 
Volcanic forcing (red) based on the time series in Fig. 4 (a,c).  The spectra in (c) 
and (d) are based on residual observed or model historical run time series, where 
the multi-model ensemble surface temperature from the 20C3M All Forcing (with 
volcanic) historical runs (CMIP3 or CMIP5) is subtracted from the observed and 
from each model’s global mean temperature series to form residual time series 
prior to computing the spectra  (see text for details).   
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1359 

Fig. 6.  Map illustrating averaging regions examined in Figs. 7-9.  Regions 
abbreviations including:  Euro = Europe; NAs = Northern Asia; SAs = Southern 
Asia; Afr = Africa; IO = Indian Ocean; Aus = Australia; TWP = Tropical western 
Pacific; TEP = Tropical eastern Pacific; IOWP = Tropical Indian Ocean/western 
Pacific warm pool; NP = North Pacific; AL = Alaska; SEUS = Southeastern 
United States;  ConUS = Continental United States; RofUS =  rest of continental 
United States, other than SEUS; SAmer = South America; Can = Canada; NAtl = 
North Atlantic; SNA = Subtropical North Atlantic; TNA = Tropical North 
Atlantic (Main Development Region); SAtl = South Atlantic.  
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1360 a) Global land and sea b) Global SST c) Global Land 

d) Northern hemisphere e) Southern Hemisphere f) NH Extratropics (3090N) 

g) SH Extratropics (3090S) h) Tropics (20N20S) i) Tropical SST (20N20S) 

j) Indian Ocean k) Tropical  West Pacific l) Tropical East Pacific 

m) North Pacific n) North Atlantic (4560N) o) Subtropical N. Atl. (2045N) 
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Fig. 7.  Trends (oC/100 yr) in area-averaged annual-mean surface temperature as a function of 1361 

starting year, with all trends ending in 2010.  The black curves are trends from observations 1362 

(HadCRUT4), where observational uncertainty is depicted as a range showing the 5th to 95th 1363 

percentile ranges of trends obtained using the 100-member HadCRUT4 ensemble.  Red curves 1364 

are ensemble means of the All-Forcing runs from 23 CMIP5 models. Blue curves are ensemble 1365 

means for Natural Forcing Only runs using a subset of seven CMIP5 models that had Natural 1366 

Forcing runs extending to 2010.  See Fig. 6 for definitions of averaging regions.  The different 1367 

models are weighted equally for the multi-model ensemble means, regardless of the number of 1368 

ensemble members they had.  The pink shading shows the 5th to 95th percentile range of the 1369 

distribution of trends obtained by combining random samples from each of the 23 CMIP5 model 1370 

control runs together with the corresponding model’s ensemble-mean forced trend (All Forcing 1371 

runs) to create a total multi-model distribution of trends that reflects uncertainty in both the 1372 

forced response and the influence of internal climate variability.  The blue-shaded region shows 1373 

the same, but for the seven models with Natural Forcing Only runs and their seven control runs.  1374 

Violet shading indicates where the pink- and blue-shaded regions overlap.  Gaps in the curves 1375 

indicate inadequate data coverage for a trend-to-2010 for those start years.  Requirements 1376 

include: 33% areal coverage to define an index time series point for a month, 40% of months 1377 

available for a year to be non-missing, and 20% of all years available in each of five equal 1378 

segments for a time series have adequate coverage for a trend. The seven CMIP5-model subset 1379 

used here and in subsequent assessment figures that incorporate Natural Forcing runs include: 1380 

CanESM2, CNRM-CM5, CSIRO-Mk3-6-0, FGOALS-g2, HadGEM2-ES, IPSL-CM5A-LR, and 1381 

NorESM1-M. 1382 

1383 
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1384 a) Tropical N. Atlantic (1020N) b) South Atlantic c) Europe 

d) Africa e) Northern Asia f) Southern Asia 

g) Australia h) Canada i) Alaska 

j) Continental United States k) Mexico l) South America 

m) Rest of  Cont. United States n) Southeast United States o) Trop. Indian Ocean/West Pac 

Fig. 8.  As in Fig. 7, but for additional regions as labeled (see Fig. 6). 
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f) Tropical SST (20N20S) 

i) North Atlantic (4560N) 

l) Southeast United States 

o) Rest of  Cont. United States 

c) Global land and sea a) Global land and sea b) Global land and sea 

d) Tropical SST (20N20S) e) Tropical SST (20N20S) 

g) North Atlantic (4560N) h) North Atlantic (4560N) 

j) Southeast United States k) Southeast United States 

m) Rest of  Cont. United States n) Rest of  Cont. United States 

CMIP3: All forcing vs Control CMIP5: All forcing vs Control CMIP5: All forcing vs Natural 

f) Tropical SST (20N20S) 

i) North Atlantic (4560N) 

l) Southeast United States 

o) Rest of  Cont. United States 

c) Global land and sea a) Global land and sea b) Global land and sea 

d) Tropical SST (20N20S) e) Tropical SST (20N20S) 

g) North Atlantic (4560N) h) North Atlantic (4560N) 

j) Southeast United States k) Southeast United States 

m) Rest of  Cont. United States n) Rest of  Cont. United States 
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1386 Fig. 9.  As in Fig. 7, but for additional regions as labeled (see Fig. 6). The left column is 
based on All Forcing runs from eight CMIP3 models that include volcanic forcing in their 
historical simulations, and the eight corresponding control runs (without volcanic forcing).  
The middle column is based on All Forcing and control runs from all 23 CMIP5 models.  
The right column is based on All Forcing, Natural Forcing Only, and control runs from the 
same sets of CMIP5 models as used in Figs. 7 and 8 (see Fig. 7 caption). 
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Detect. warming:  > simulated 
Detect. warming:  consistent  
Detect. warming:  < simulated 
No detectable trend 
Detect. cooling:   < simulated 
Detect. cooling:  consistent 
Detect. cooling:  >  simulated 

Attrib. anthropogenic. warming but  > simulated 
Attrib. & consistent  anthropogenic warming  
Detect. warming:  < simulated 
No detectable trend 
Detect. cooling:   < simulated 
Attributable anthropogenic cooling 
Detect. cooling:  >  simulated 

19012010 Surface Temperature Trends 

CMIP3 w/ volcanic CMIP5 all forcing 

a) Observed Trend  b) Observed Trend  

c) CMIP3 ensemble trend d) CMIP5 ensemble trend 

e) CMIP3 assessment f) CMIP5 assessment 

Fig. 10.  Geographical distribution of surface temperature trends (1901-2010) in:  
(a,b) HadCRUT4 observations; (c) CMIP3 eight-model ensemble mean (All 
Forcing, volcanic models); d) CMIP5 23-model ensemble mean (All Forcing, 
volcanic models).  Unit:  degrees C per 100 yr.  In (e, f) the observed trend is 
assessed in terms of the multi-model ensemble mean trends and variability in the 
historical forcing and control runs (CMIP3 and CMIP5).  The different colors in 
(e, f) depict different categories of assessment result; the categories are listed in 
the legends below panels e and f. Panel (e) compares observed trends with trends 
from 8 CMIP3 All Forcing models and their 8 control runs.  Panel (f) compares 
observed trends with trends from 23 All-Forcing CMIP5 models and their 23 
control runs and with the 7 All Forcing CMIP5 model subset and their 7 control 
runs. 

Detect. warming:  > simulated 
Detect. warming:  consistent  
Detect. warming:  < simulated 
No detectable trend 
Detect. cooling:   < simulated 
Detect. cooling:  consistent 
Detect. cooling:  >  simulated 

19012010 Surface Temperature Trends 

CMIP3 w/ volcanic CMIP5 all forcing 

a) Observed Trend  b) Observed Trend  

c) CMIP3 ensemble trend d) CMIP5 ensemble trend 

e) CMIP3 assessment f) CMIP5 assessment 
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1388 

Detect. warming:  > simulated 
Detect. warming:  consistent  
Detect. warming:  < simulated 
No detectable trend 
Detect. cooling:   < simulated 
Detect. cooling:  consistent 
Detect. cooling:  >  simulated 

Attrib. anthropogenic. warming but  > simulated 
Attrib. & consistent  anthropogenic warming  
Detect. warming:  < simulated 
No detectable trend 
Detect. cooling:   < simulated 
Attributable anthropogenic cooling 
Detect. cooling:  >  simulated 

19512010 Surface Temperature Trends 

CMIP3 w/ volcanic CMIP5 all forcing 

a) Observed Trend  b) Observed Trend  

c) CMIP3 ensemble trend d) CMIP5 ensemble trend 

e) CMIP3 assessment f) CMIP5 assessment 

Fig. 11.  Same as Fig. 10 but for trends from 1951 to 2010. 
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19512010 Surface Temperature Trends 
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1389 

Attrib. anthropogenic. warming but  > simulated 
Attrib. & consistent  anthropogenic warming  
Detect. warming:  < simulated 
No detectable trend 
Detect. cooling:   < simulated 
Attributable anthropogenic cooling 
Detect. cooling:  >  simulated 

 

Detect. warming:  > simulated 
Detect. warming:  consistent  
Detect. warming:  < simulated 
No detectable trend 
Detect. cooling:   < simulated 
Detect. cooling:  consistent 
Detect. cooling:  >  simulated 

19812010 Surface Temperature Trends 

CMIP3 w/ volcanic CMIP5 all forcing 

a) Observed Trend  b) Observed Trend  

c) CMIP3 ensemble trend d) CMIP5 ensemble trend 

e) CMIP3 assessment f) CMIP5 assessment 

Fig. 12.  Same as Fig. 10 but for trends from 1981 to 2010. 
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1390 

a)  

b)  

Fig. 13.  Summary assessment of observed vs. model ensemble-mean trends-to-2010. The 
percent of global analyzed areas meeting certain criteria (see graph labels) are shown as a 
function of start year (all trends ending in 2010).  a) Assessments of the 8 CMIP3 (solid 
lines) vs. the 23 CMIP5 (dashed lines) multi-model ensemble mean (historical 20C3M All-
Forcing runs with volcanic forcing and associated control runs).  b) Assessment of the 
CMIP5 multi-model ensemble means and control runs using all 23 CMIP5 models and their 
23 control runs for the All-Forcing assessment and the seven-model subset of CMIP5 
models (with Natural Forcing Only runs extending to 2010) and their seven control runs for 
the Natural-Forcing assessment.  The black curves are the sum of the red and orange 
curves; the sum of black + light green + dark green + blue = 100%. 

 

a)  

b)  
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1391 

Fig. 14.  Geographical distribution of:  (a) HadCRUT4 observed or (b) CMIP3 multi-
model (volcanic models) ensemble mean surface temperature trends (1901-2010) in 
degrees C per 100 yr.  The observed trend is assessed in terms of the eight individual 
CMIP3 models (trends and variability) in (c-k).  Panels (c-k) show the fraction of the 
eight individual CMIP3 models whose historical All Forcing runs meet the criteria 
listed above each panel.  The criteria are:  c) no detectable change; d) warming that is 
detectable but significantly greater than simulated in the All Forcing runs; e) warming 
that is detectable and consistent with the All Forcing runs; f) warming that is detectable 
but significantly less than simulated in the All Forcing runs;  g) warming that is 
detectable; h) warming that is detectable and either consistent with or greater than the 
simulated (All Forcing) runs; i) observed and simulated trends are consistent (though 
the observed trend may not be detectable); j) observed and simulated internal low-
frequency variability are consistent; and k) conditions for (i) and (j) are both satisfied 
(i.e., the simulated variability and trend are both consistent with observations. The 
white numbers at the bottom of maps c-k indicate the area-weighted global average of 
the mapped fields. 

 

CMIP3 assessment :  fraction of models 
(8 Models with all forcings, incl. volcanic) 
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1392 CMIP5 assessment :  fraction of models 
(23 Models with all forcings, incl. volcanic) 

Linear Trends (19012010); 
o

C/100yr 

Figure 15.  Same as Fig. 14, but for 23 CMIP5 models with volcanic forcing. 

Fraction of 

models 
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1393 CMIP5 assessment :  fraction of models 
(7 Models with all forcings & natural forcing only) 

Linear Trends (19012010); 
o

C/100yr 

Fig. 16. Geographical distribution of:  (a) HadCRUT4 observed or (b) CMIP5 multi-
model (volcanic models) ensemble mean surface temperature trends (1901-2010) in 
degrees C per 100 yr.  The observed trend is assessed in terms of trend and variability 
using the seven CMIP5 models that had available an All Forcing ensemble and an 
ensemble of Natural Forcing Only runs extending to 2010.  Panels (c-l) show the 
fraction of the seven individual CMIP5 models at each grid point whose All Forcing, 
Natural Forcing Only, and control runs together meet the criteria listed above the 
panel.  The criteria are:  c) no detectable change; d) warming that is detectable 
(inconsistent with Natural Forcing runs) but significantly less than simulated in the 
All Forcing runs; e) attributable anthropogenic warming that is detectable 
(inconsistent with Natural Forcing Only runs) and consistent with the All Forcing 
runs; f) attributable anthropogenic warming that is significantly greater than simulated 
in the All Forcing runs;  g) warming that is detectable; h) total attributable to 
anthropogenic warming (i.e., sum of (e) and (f); i) observed and simulated trends are 
consistent (though the observed trend may not be detectable); j) observed and 
simulated internal low-frequency variability are consistent; k) conditions for (i) and (j) 
are both satisfied (i.e., the simulated variability and trend are both consistent with 
observations; and l) conditions for (h) and (j) are both satisfied (i.e., there is 
attributable anthropogenic warming and low-frequency variance is consistent with 
observations).  
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 1394 

 1395 

 a) b) 

c) d) 

e) f) 

Fig. 17.  Individual CMIP3 (a, c) and CMIP5 (b, d, e, f) models are assessed for 
consistency with detectable observed surface temperature trends-to-2010 (a-d), for 
attributable anthropogenic trends (e, f), and for consistency of simulated internal variability 
(c, d, f).  Trend results are shown for start years from 1901 to 1991 (all trends ending in 
2010).  Plotted is the percent of analyzed global area where each individual model’s 
(legend) multi-realization ensemble mean forced trend and internal variability meet the 
criteria listed above the panel.  The trends are analyzed at each grid point where there is 
sufficient temporal data coverage for the trend in question (see text). Note that panel (f) 
includes areas where the observed trend is detectable but greater than simulated, whereas 
panel (d) includes only areas with trends that are detectable and consistent with 
simulations.   


